О фредгольмовости и разрешимости системы интегральных уравнений в задаче сопряжения для уравнения Гельмгольца

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассматривается скалярная трёхмерная краевая задача дифракции волны для уравнения Гельмгольца с условиями сопряжения, предполагающими наличие бесконечно тонкого материала на границе сред. Доказываются теоремы единственности и существования решения. Исходная задача сводится к системе интегральных уравнений по поверхности раздела сред. Приводятся расчётные формулы для системы линейных алгебраических уравнений, полученные после применения метода коллокации, и численные результаты решения задачи, когда область является шаром с определёнными условиями сопряжения.

Об авторах

Ю. Г Смирнов

Пензенский государственный университет

Email: smirnovyug@mail.ru
Пенза, Россия

О. В Кондырев

Пензенский государственный университет

Автор, ответственный за переписку.
Email: kow20002204@mail.ru
Пенза, Россия

Список литературы

  1. Ладыженская О.А. Краевые задачи математической физики. М., 1973.
  2. Санчес-Паленсия Э. Неоднородные среды и теория колебаний. М., 1984.
  3. Nedelec J.-C. Acoustic and Electromagnetic Equations. Integral Representations for Harmonic Problems. New York, 2001.
  4. Колтон Д., Кресс Р. Методы интегральных уравнений в теории рассеяния. М., 1987.
  5. Лерер А.М. Численная оценка погрешности метода возмущения при решении задачи об отражении электромагнитной волны от нелинейного графенового слоя // Радиотехника и электроника. 2022. T. 67. № 9. С. 855-858.
  6. Смирнов Ю.Г., Тихов С.В., Гусарова Е.В. О распространении электромагнитных волн в диэлектрическом слое, покрытом графеном // Изв. вузов. Поволжский регион. Физ.-мат. науки. 2022. № 3. С. 11-18.
  7. Mikhailov S.A. Quantum theory of the third-order nonlinear electrodynamic effects of graphene // Phys. Rev. B. 2016. V. 93. № 8. Art. 085403.
  8. Hanson G.W. Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene // J. of Appl. Phys. 2008. V. 103. № 6. Art. 064302.
  9. Ильинский А.С., Кравцов В.В., Свешников А.Г. Математические модели электродинамики и акустики. М., 1991.
  10. Colton D., Kress R. Inverse Acoustic and Electromagnetic Scattering Theory. New York, 2013.
  11. Vainikko G. Multidimensional Weakly Singular Integral Equation. Berlin; Heidelberg, 1993.
  12. Вайникко Г.М., Карма О.О. О сходимости приближённых методов решения линейных и нелинейных операторных уравнений // Журн. вычислит. математики и мат. физики. 1974. Т. 14. № 4. С. 828-837.

© Российская академия наук, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах