Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 211, No 6 (2020)

Cover Page

Full Issue

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Local infimum and a family of maximum principles in optimal control

Avakov E.R., Magaril-Il'yaev G.G.

Abstract

The notion of a local infimum for the optimal control problem, which generalizes the notion of an optimal trajectory, is introduced. For a local infimum the existence theorem is proved and necessary conditions in the form of a family of ‘maximum principles’ are derived. The meaningfulness of the necessary conditions, which generalize and strengthen Pontryagin's maximum principle, is illustrated by examples. Bibliography: 9 titles.
Matematicheskii Sbornik. 2020;211(6):3-39
pages 3-39 views

Sobolev $W^1_p$-spaces on $d$-thick closed subsets of $\mathbb R^n$

Vodopyanov S.K., Tyulenev A.I.

Abstract

Let $S\subset\mathbb R^n$ be a nonempty closed set such that for some $d\in[0,n]$ and $\varepsilon>0$ the $d$-Hausdorff content $\mathscr H^d_\infty(S\cap Q(x,r))\geq\varepsilon r^d$ for all cubes $Q(x,r)$ with centre $x\in S$ and edge length $2r\in(0,2]$. For each $p>\max\{1,n-d\}$ we give an intrinsic characterization of the trace space $W_p^1(\mathbb R^n)|_S$ of the Sobolev space $W_p^1(\mathbb R^n)$ to the set $S$. Furthermore, we prove the existence of a bounded linear operator $\operatorname{Ext}\colon W_p^1(\mathbb R^n)|_S\to W_p^1(\mathbb R^n)$ such that $\operatorname{Ext}$ is the right inverse to the standard trace operator. Our results extend those available in the case $p\in(1,n]$ for Ahlfors-regular sets $S$. Bibliography: 36 titles.
Matematicheskii Sbornik. 2020;211(6):40-94
pages 40-94 views

A canonical basis of a pair of compatible Poisson brackets on a matrix algebra

Garazha A.A.

Abstract

Given an arbitrary complex matrix $A$ and a generic matrix $X$ we find a canonical basis for the Kronecker part of the bi-Lagrangian subspace with respect to the corresponding Poisson brackets on the Lie algebra $\mathfrak{gl}_n(\mathbb C)$, and also find a system of functions in bi-involution corresponding to this basis. In particular, for nilpotent matrices $A$ we prove that all nonzero functions obtained by applying the Mishchenko-Fomenko argument shift method to the coefficients of the characteristic polynomial form the Kronecker part of the complete system of functions in bi-involution. Bibliography: 9 titles.
Matematicheskii Sbornik. 2020;211(6):95-106
pages 95-106 views

Functions with universal Fourier-Walsh series

Grigoryan M.G.

Abstract

We prove results on the existence of functions whose Fourier series in the Walsh system are universal in some sense or other in the function classes $L^p[0,1]$, $0< p< 1$, and $M[0,1]$. We also give a description of the structure of these functions.
Bibliography: 30 titles.

Matematicheskii Sbornik. 2020;211(6):107-131
pages 107-131 views

Three-webs $W(r,r,2)$

Shelekhov A.M.

Abstract

Local differential-geometric properties of three-webs $W(r,r,2)$ formed on a $2r$-dimensional manifold by foliations of codimension $r,r$ and $2$, respectively, are considered. In particular, three-webs defined by complex analytic functions of $r$ complex arguments belong to this class of webs. The structure equations of a three-web $W(r,r,2)$ in an adapted co-frame (in particular, in a natural co-frame) are deduced; the canonical connection $\Gamma$ on the manifold of a web $W(r,r,2)$ is introduced; formulae are obtained to calculate (in a natural co-basis) the components of the first structure tensor of a three-web $W(r,r,2)$ in terms of the derivatives of the function of this web. Three special classes of three-webs $W(r,r,2)$ are considered in detail: regular and group three-webs and also three-webs $W(r,r,2)$ generated by holomorphic functions. Bibliography: 17 titles.
Matematicheskii Sbornik. 2020;211(6):132-156
pages 132-156 views

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).