开放存取 开放存取  受限制的访问 ##reader.subscriptionAccessGranted##  受限制的访问 订阅存取

卷 50, 编号 2 (2024)

封面

完整期次

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

Articles

Высокотемпературная графитизация алмаза при термообработке на воздухе и в вакууме

Шевченко В., Перевислов С., Ножкина А., Орыщенко А., Арлашкин И.

摘要

В работе изучены морфологические и структурные изменения, происходящие при графитизации синтетического алмазного порошка (с высоким огранением граней) и микропорошка, при термообработке на воздухе при температуре до 1000°C и в вакууме при температуре до 1600°C. Наиболее развитыми гранями исходных кристаллов алмаза являются октаэдрические {111} и кубические {100} грани. Установлено, что графитизация начинается с вершин и ребер кристаллов. Грани {111} более подвержены графитизации, чем грани {100}. Морфологический анализ графитированного алмаза АС160 на воздухе помог изучить кинетику графитизации: рост дентритных графитовых кристаллов и образования «ямок графитизации» на поверхности граней алмаза. Впервые показано, что на разных гранях алмаза формируется графит разной формы с разной скоростью, так на гранях {111} формируется и растет графит в виде треугольников, а на гранях {100} — в виде квадратов. При высокой температуре наблюдается объемная графитизация алмазных частиц, сопровождаемая их разрушением, в основном по ступеням роста.

Fizika i himiâ stekla. 2024;50(2):115-134
pages 115-134 views

Кластерная самоорганизация интерметаллических систем: кластеры-прекурсоры K3, K4, K6 для самосборки кристаллических структур RbNa8Ga3As6-oP72, Sr2Ca4In3Ge6-oP56, Sr8Li4In4Ge8-oP24

Шевченко В., Илюшин Г.

摘要

С помощью компьютерных методов (пакет программ ToposPro) осуществлен комбинаторно-топологический анализ и моделирование самосборки кристаллических структур RbNa8Ga3As6-oP72 (a = 22.843Å, b = 4.789 c = 16.861 Å, V = 1844.6 Å3, Pnma), Sr2Ca4In3Ge6-oP56 (a = 13.243 Å, b = 4.460 Å, c = 23.505 Å, V = 1388.47 Å3, Pnma), Sr8Li4In4Ge8-oP24 (a = 7.503, b = 4.619 Å, c = 17.473 Å, V = 605.6 Å3, Pnma). Для кристаллической структуры RbNa8Ga3As6-oP72 установлены 93 варианта кластерного представления 3D-атомной сетки с числом структурных единиц 3, 4 и 6. Рассмотрен вариант самосборки с участием трех типов кластеров-прекурсоров: из сдвоенных тетраэдров K6(4a) = 0@ 6 (Rb2Na2As2) и K6(4b) = 0@ 6 (Na4As2) с симметрией g = –1, тетраэдра K4(8d) = 0@4(Na3As), двух тройных колец K3–1 = 0@ 3(NaGaAs), и атомов-спейсеров Ga и As. Для кристаллической структуры Sr2Ca4In3Ge6-oP56 установлены 43 варианта кластерного представления 3D атомной сетки с числом структурных единиц 3, 4 и 6. Рассмотрен вариант самосборки кристаллической структуры с участием 3 типов кластеров-прекурсоров из сдвоенных тетраэдров K6(4a) = 0@ 6 (Sr2In2Ge2) и K6(4b) = 0@ 6 (Ca2In2Ge2) с симметрией g = –1, сдвоенных тетраэдров K6(4c) = 0@ 6 (SrCa2InGe2) и атомов-спейсеров Ge2 и Ge4. Для кристаллической структуры Sr8Li4In4Ge8-oP24 установлены 3 варианта кластерного представления 3D-атомной сетки с двумя структурными единицами. Рассмотрен вариант самосборки кристаллической структуры с участием двух типов кластеров-прекурсоров в виде сдвоенных тетраэдров K6 = (Sr2Li2Ge2) с симметрией g = –1 и тройных колец K3 = 0@3 (SrInGe).

Реконструирован симметрийный и топологический код процессов самосборки 3D-структур из кластеров-прекурсоров в виде: первичная цепь → слой → каркас.

Fizika i himiâ stekla. 2024;50(2):135-148
pages 135-148 views

Кластерная самоорганизация интерметаллических систем: кластеры-прекурсоры K13, K11, K4, K3 для самосборки кристаллических структур Ce56Ni24Si44-mS124 и Ba10La2Si12-oP48

Шевченко В., Илюшин Г.

摘要

С помощью компьютерных методов (пакет программ ToposPro) осуществлен комбинаторно-топологический анализ и моделирование самосборки кристаллических структур Ce56Ni24Si44-mS124 (a = 34.08 Å, b = 4.245 Å, c = 21.37 Å, β = 113.52(3) °, V = 2835.14 Å3, C12/m1) и Ba10La2Si12-oP48 (a = 17.144, b = 4.876, c = 17.910 Å, V = 1497.46 Å3, Pnma). Для кристаллической структуры Ce56Ni24Si44-mS124 установлены 5511 вариантов кластерного представления 3D-атомной сетки с числом структурных единиц 5 (28 вариантов), 6 (943 варианта), 7 (2316 вариантов), 8 (1704 варианта), 9 (520 вариантов). Рассмотрен вариант самосборки кристаллической структуры из образующих упаковки трех типов кластеров-прекурсоров K13 = 0@13 (Ce6CeNi2Si4), K4 = 0@ 4(Ce2NiSi), K3 = 0@ 3(CeNiSi) и атомов-спейсеров Si. Для кристаллической структуры Ba10La2Si12-oP48 установлен 21 вариант кластерного представления 3D-атомной сетки с числом структурных единиц 2 и 3. Рассмотрен вариант самосборки кристаллической структуры с участием образующих упаковки кластеров-прекурсоров K11 = 0@11(Ba5LaSi5) и атомов-спейсеров Si. Реконструирован симметрийный и топологический код процессов самосборки 3D-структур из кластеров-прекурсоров в виде: первичная цепь → слой → каркас.

Fizika i himiâ stekla. 2024;50(2):149-159
pages 149-159 views

Влияние элементного состава стекол на методологию их подбора для конструирования смотровых радиационно-защитных окон

Арбузов В.

摘要

Предложена методология подбора стекол для конструирования смотровых радиационно-защитных окон (СРЗО) с высокой кратностью ослабления фотонного ионизирующего излучения, приемлемой пропускающей способностью и повышенным эффективным показателем преломления, в основе которой лежит учет влияния элементного состава стекол на их характеристики ослабления рентгеновского и гамма-излучения. Высказано предположение о целесообразности конструировать разные СРЗО для диапазонов энергий квантов высокоэнергетического ионизирующего излучения от 1.0 до 3.0 МэВ и от 0.2 до 1.0 МэВ. Предложено 2 приемлемых варианта СРЗО: кроново-флинтовый на основе пары стекол ТКН1 — ТФ200, чисто кроновый на базе стекла ТКН1.

Fizika i himiâ stekla. 2024;50(2):160-171
pages 160-171 views

Исследование химической устойчивости боросиликатных стекол с пониженной температурой плавления, разрабатываемых для удаляемого малогабаритного плавителя дизайна ФГУП «ПО «Маяк», методом симплексного планирования

Шайдуллин С., Чеснокова А., Козлов П., Ремизов М., Джевелло К., Беланова Е.

摘要

В данной статье приведены результаты исследований 15 боросиликатных стекол с пониженной температурой варки разных составов с помощью метода математического планирования на симплексе. Для каждого стекла определены температура варки, однородность, а также скорость и степень выщелачивания в соответствии с ГОСТ Р 52126–2003 [1] и НП-019-2015 [2]. На основании полученных данных построены математические модели. В результате исследований определена наиболее перспективная область для дальнейшего исследования и разработки состава боросиликатного стекла для удаляемого малогабаритного плавителя дизайна ФГУП «ПО «Маяк».

Fizika i himiâ stekla. 2024;50(2):172-187
pages 172-187 views

Синтез свинецсодержащих стеклокристаллических материалов с различными нуклеаторами кристаллизации

Адинаев Х., Кадырова З., Шилова О.

摘要

Синтезированы Ce-, Nd- и Er-содержащие стекла на основе двойной системы РbО–SiO2. Исследован процесс массовой кристаллизации для получения стеклокристаллических (ситаллы) материалов в результате их термообработки при различных температурах. Разработаны составы ситаллов с указанными нуклеаторами кристаллизации. Установлено, что синтезирован стеклокристаллический материал с улучшенными физико-химическими свойствами при сравнительно низких температурах кристаллизации (750°С).

Fizika i himiâ stekla. 2024;50(2):188-197
pages 188-197 views

Термическое поведение перовскитоподобных фаз в системе GdAlO3–SrO

Попова В., Тугова Е.

摘要

Приводятся результаты исследования разреза GdAlO3–SrO, который является одним из внутренних сечений тройной системы Gd2O3–SrO–Al2O3. В разрезе GdAlO3–SrO синтезировано три тройных соединения — Gd2SrAl2O7, GdSrAlO4, GdSr2AlO5, кристаллизующихся в тетрагональной сингонии. Систематизированы данные о механизме их твердофазного образования. Представлены результаты термической устойчивости перовскитоподобных фаз в системе GdAlO3–SrO в широком интервале температур 1100–1800°C на воздухе. Установлен конгруэнтный характер плавления сложных оксидов Gd2SrAl2O7, GdSrAlO4, GdSr2AlO5, и определены их температуры плавления.

Fizika i himiâ stekla. 2024;50(2):198-204
pages 198-204 views

Термическое расширение синтетического аналога маттеучита NaHSO4·H2O и α–NaHSO4

Шаблинский А., Дмитриева Н., Бубнова Р., Филатов С., Кржижановская М., Уголков В.

摘要

Изучено термическое поведение водного сульфата NaHSO4·H2O и продукта его дегидратации α–NaHSO4. Исследования проводились методами терморентгенографии и комплексного термического анализа. По данным трех экспериментов установлены температура, характер и последовательность фазовых превращений: NaHSO4·H2O(30÷50°C) → α–NaHSO4(140÷180°C) → Na2S2O7 + Na3H(SO4)2. С повышением температуры в структуре NaHSO4·H2O происходят шарнирные деформации на уровне цепочки из полиэдров NaO3(OH)(H2O)2. Анизотропия термического расширения составляет αmax/αmin = 1.9 для NaHSO4·H2O и αmax/αmin = 1.3 для NaHSO4.

Fizika i himiâ stekla. 2024;50(2):205-213
pages 205-213 views

Rb3SO4F: уточнение кристаллической структуры и термическое поведение

Авдонцева М., Золотарев А., Кривовичев С.

摘要

Кристаллическая структура и термическое поведение нового соединения Rb3SO4F изучены методом рентгеноструктурного анализа (in situ) в широком диапазоне температур. Соединение стабильно до температуры 377°C и не претерпевает фазовых переходов в процессе нагрева. Расчет коэффициентов тензора термического расширения показал, что структура расширяется резко анизотропно: максимальное термическое расширение наблюдается в плоскости ab, в то время как минимальное параллельно направлению [001], что хорошо коррелируется с изменением длин связи и углов в анионоцентрированном октаэдре FRb6.

Fizika i himiâ stekla. 2024;50(2):214-219
pages 214-219 views

Исследование влияния добавки оксида алюминия на физико-химические свойства ксерогелей, порошков и керамики из ZrO2

Белоусова О., Федоренко Н., Хамова Т.

摘要

Методом совместного осаждения гидроксидов из водных растворов азотнокислых солей циркония, иттрия, алюминия и церия водным раствором аммиака синтезированы ксерогели и порошки твердых растворов на основе диоксида циркония. Исследованы характеристики получаемых материалов. Проведена оценка влияния стабилизаторов и добавок на их синтез, спекание и свойства.

Fizika i himiâ stekla. 2024;50(2):220-228
pages 220-228 views

Ультранизкоплавкие соединения полифосфата аммония

Шаулов А., Грачев А., Авраменко Н., Бычков В., Любимов А., Берлин А.

摘要

При взаимодействии низкомолекулярного полифосфата аммония с полиэтиленполиамином получены термопластичные полимеры, содержащие фракции с температурами стеклования Тстекл. ≥ –95°С. Измерены их термо- и теплостойкость, влагоустойчивость при влажности 40–50%. Предложены структура и химическая схема образования продуктов взаимодействия.

Fizika i himiâ stekla. 2024;50(2):229-238
pages 229-238 views

Синтез прекурсоров сложных оксидных систем Al2O3–ZrO2–МxOy (М = La, Y, Ce) с использованием электрогенерированных реагентов и их физико-химические свойства

Дресвянников А., Петрова Е., Кашфразыева Л., Хайруллина А.

摘要

Разработаны научные основы синтеза прекурсоров наноструктурированных оксидных систем Al2O3-ZrO2-MxOy (М = La, Y, Ce). Изучены особенности формирования прекурсоров таких систем в условиях быстрого смешения электрогенерированных реагентов, реализуемые в бездиафрагменном коаксиальном реакторе-электролизере. С использованием методов потенциодинамических поляризационных кривых, рентгеновской дифрактометрии, рентгенофлуоресцентного, синхронного термического анализов и лазерной дифракции исследованы анодные процессы, протекающие в электролизере, морфология сформированных в растворе и трансформируемых в процессе термообработки частиц, фазовый, гранулометрический и элементные составы прекурсоров и оксидных систем. Предлагаемый подход позволяет получать модифицированные редкоземельными элементами оксидные системы на основе бинарной системы Al2O3-ZrO2, характеризующиеся наличием в них фазы тетрагонального диоксида циркония.

Fizika i himiâ stekla. 2024;50(2):239-248
pages 239-248 views

Термоиндуцированные обратимые изменения полосы поглощения 7200 СМ–1 в волоконном световоде с высокой концентрацией OH-групп в сердцевине

Гнусин П.

摘要

Для многомодового волоконного световода, сердцевина которого сформирована кварцевым стеклом типа КУ-1 с высоким содержанием гидроксильных групп, проведено изучение динамики обратимого (восстанавливающегося) изменения оптического поглощения данных групп вблизи 7200 см–1 при нагреве световода до 1050°С. На основании разложения полосы поглощения на спектральные компоненты, проделанного при различных температурах, были сделаны предположения относительно структуры центров поглощения, связанных с OH-группами.

Fizika i himiâ stekla. 2024;50(2):249-260
pages 249-260 views

КРАТКОЕ СООБЩЕНИЕ

Исследование зависимости изменения заряда поверхности от степени замещения Mg на Al в синтетических смектитах

Аликина Ю., Хамова Т., Голубева О.

摘要

Исследована зависимость ζ-потенциала поверхности синтетических алюмосиликатов со структурой монтмориллонита систематически меняющегося состава Na2x(Al2(1-x), Mg2x)Si4O10(OH)2⋅nH2O, где 0.1 ≤ x ≤0.9, от химического состава образцов и pH среды. Показано влияние степени изоморфного замещения атомов магния на алюминий на характер изменения ζ-потенциала. Повышение степени изоморфного замещения и увеличение pH среды сопровождается увеличением отрицательного заряда поверхности образцов. Полученные результаты позволяют осуществлять выбор оптимальных составов алюмосиликатных сорбентов для извлечения разнозаряженных ионов из водных растворов с различными значениями pH, а также для использования в качестве носителей лекарственных препаратов.

Fizika i himiâ stekla. 2024;50(2):261-265
pages 261-265 views

Электропроводность стекол системы Na2O–B2O3–SiO2–Cr2O3

Лаврова М., Конон М., Семенова Е., Данилович Д., Саратовский А.

摘要

Изучены электрические свойства стекол составов 8Na2O–(22-x)B2O3–70SiO2xCr2O3, где x варьируется от 0.3 до 6 мол.%, термообработанных при 550°C в течение 48 ч. Структура стекол была исследована методами сканирующей электронной микроскопии и рентгенофазового анализа. Установлено, что во всех стеклах выбранных составов в процессе термообработки формируется двухкаркасная ликвационная структура, а также кристаллизуется фаза эсколаита (α-Cr2O3). При сравнении полученных значений электрического сопротивления и энергии активации электропроводности хромсодержащих стекол и стекла без Cr2O3 состава 8Na2O‧22B2O3‧70SiO2, а также железосодержащих стекол похожих составов высказано предположение о том, что исследованные стекла с Cr2O3 обладают ионной проводимостью, значения удельного объемного сопротивления хромсодержащих и железосодержащих стекол не отличаются друг от друга. Введение Cr2O3 в натриевоборосиликатные стекла не оказывает влияния на электропроводность.

Fizika i himiâ stekla. 2024;50(2):266-270
pages 266-270 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».