Синтез и биологическая активность эфиров на основе циклоалкендикарбоновых кислот

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Синтезированы неописанные ранее эфиры на основе N-замещенных имидов циклоалифатических карбоновых кислот с высокими выходами, представлены эффективные методы их получения. Проведены токсикологические исследования полученных соединений с использованием различных тест-объектов (Chlorella vulgaris, Allium cepa, Drosophila melanogaster). Показано, что исследованные соединения не активны по отношению к D. melanogaster, увеличивают частоту мутаций у C. vulgaris и обладают способностью индуцировать хромосомные перестройки у A. cepa. Синтезированные соединения могут использоваться при разработке препаратов с противоопухолевым эффектом.

Об авторах

А. А. Фирстова

Ярославский государственный технический университет

Автор, ответственный за переписку.
Email: firstova.a.a@mail.ru
Россия, 150023, Ярославль, Московский просп., 88

Е. Р. Кофанов

Ярославский государственный технический университет

Email: firstova.a.a@mail.ru
Россия, 150023, Ярославль, Московский просп., 88

М. И. Ковалева

Ярославский государственный университет им. П.Г. Демидова

Email: firstova.a.a@mail.ru
Россия, 150003, Ярославль, ул. Советская, 14

Список литературы

  1. Yabuno T., Konishi N., Nakamura M., Tsuzuki T., Tsunoda S., Sakaki T., Hiasa Y. // J. Neurooncol. 1998. V. 36. P. 105–112. https://doi.org/10.1023/a:1005878402133
  2. Perez-Tomas R. // Curr. Med. Chem. 2006. V. 13. P. 1859–1876. https://doi.org/10.2174/092986706777585077
  3. Fu X., Palomar A.J., Hong E.P. // J. Nat. Prod. 2004. V. 67. P. 1415–1418. https://doi.org/10.1021/np0499620
  4. Bailly C., Carrasco C., Joubert A. // Biochemistry. 2003. V. 42. P. 4136–4150. https://doi.org/10.1021/bi027415c
  5. Richardson M.B., Gabriel K.N., Garcia J.A. // Bioconjugate Chem. 2020. V. 31. P. 1449−1462. https://doi.org/10.1021/acs.bioconjchem.0c00143
  6. Yang H., Dou W., Lou J., Leng Y., Shen J. // Bioorg. Med. Chem. Lett. 2008. V. 18. P. 1340–1345. https://doi.org/10.1016/j.bmcl.2008.01.020
  7. Arnaldi G., Angeli A., Atkinson A.B., Bertagna X., Cavagnini F., Chrousos G.P., Fava G.A., Findling J.W., Gaillard R.C., Grossman A.B., Kola B., Lacroix A., Mancini T., Mantero F., Newell-Price J., Nieman L. K., Sonino N., Vance M.L., Giustina A., Boscaro M.J. // J. Clin. Endocrinol. Metab. 2003. V. 88. P. 5593–5602. https://doi.org/10.1210/jc.2003-030871
  8. Grundy S.M., Brewer H.B., Cleeman J.I., Smith S.C., Lenfant C. // Circulation. 2004. V. 109. P. 433–438. https://doi.org/10.1161/01.CIR.0000111245.75752.C6
  9. Inagaki K., Otsuka F., Miyoshi T., Watanabe N., Suzuki J., Ogura T., Makino H. // Endocr. J. 2004. V. 51. P. 201–206. https://doi.org/10.1507/endocrj.51.201
  10. Diederich S., Grossmann C., Hanke B., Quinkler M., Herrmann M., Bahr V., Oelkers W. // Eur. J. Endocrinol. 2000. V. 142. P. 200–207. https://doi.org/10.1530/eje.0.1420200
  11. Alberts P., Nilsson C., Selen G., Engblom L.O.M., Edling N.H.M., Norling S., Klingstrom G., Larsson C., Forsgren M., Ashkzari M., Nilsson C.E., Fiedler M., Bergqvist E., Ohman B., Bjorkstrand E., Abrahmsen L.B. // Endocrinology. 2003. V. 144. P. 4755–4762. https://doi.org/10.1210/en.2003-0344
  12. Gu X., Dragovic J., Koo G.C., Koprak S.L., LeGrand C., Mundt S.S., Shah K., Springer M.S., Tan E.Y., Thieringer R., Hermanowski-Vosatka A., Zokian H.J., Balkovec J.M., Waddell S.T. // Bioorg. Med. Chem. Lett. 2007. V. 17. P. 2838–2843. https://doi.org/10.1016/j.bmcl.2005.08.052
  13. Miguet L., Zhang Z., Barbier M., Grigorov M.G. // J. Comput. Aided Mol. Des. 2006. V. 20. P. 67–81. https://doi.org/10.1007/s10822-006-9037-3
  14. Schuster D., Maurer E.M., Laggner C., Nashev L.G., Wilckens T., Langer T., Odermatt A. // J. Med. Chem. 2006. V. 49. 3454–3466. https://doi.org/10.1021/jm0600794
  15. Gierasch L.M. // Annu. Rev. Biochem. 1992. V. 61. P. 387–418. https://doi.org/10.1146/annurev.bi.61.070192.002131
  16. Liskamp R.M. // Recl. Trav. Chim. Pays-Bas. 1994. V. 113. P. 1–19. https://doi.org/10.1002/recl.19941130102
  17. Gante J. // Angew. Chem. Int. Ed. Engl. 1994. V. 33. P. 1699–1720. https://doi.org/10.1002/anie.199416991
  18. Jiang K., Shimotakahara H., Luo M., Otani M., Nakamura H., Moselhy S.S., Abualnaja K.O., Labeed Al-Malki A., Kumosani T. A., Kitahata N., Takeshi N., Nakajima M., Asami T. // Bioorg. Med. Chem. Lett. 2017. V. 27. P. 3678–3682. https://doi.org/10.1016/j.bmcl.2017.07.012
  19. Jiang K., Otani M., Shimotakahara H., Yoon J.-M., Park S.-H., Miyaji T., Nakano T., Nakamura H., Nakajima M., Asami T. // Plant Physiology. 2017. V. 173. P. 825–835. https://doi.org/10.1104/pp.16.00937
  20. Gupta R., Chakrabarty S.K. // Plant Signal Behav. 2013. V. 8. P. 255–264. https://doi.org/10.4161/psb.25504
  21. Rodaway S.J., Gates D.W., Brindle C. // Plant Growth Regul. 1991. V. 10. P. 243–259. https://doi.org/10.1007/BF00024415
  22. Gallego-Giraldo C., Hu J., Urbez C., Gomez M.D., Sun T.-P., Perez-Amador M.A. // Plant J. 2014. V. 79. P. 1020–1032. https://doi.org/10.1111/tpj.12603
  23. Chandler P.M., Harding C.A., Ashton A.R., Mulcair M.D., Dixon N.E., Mander L.N. // Mol. Plant. 2008. V. 1. P. 285–294. https://doi.org/10.1093/mp/ssn002
  24. Sukiran N.A., Pollastri S., Steel P.G., Knight M.R. // Plant Direct. 2022. V. 26. P. 394–398. https://doi.org/10.1002/pld3.398
  25. Wang X., Baloch S.K., Ma L., Wang X., Shi J., Zhu Y., Wu F., Pang Y., Lu G., Qi J., Gu H., Yang Y. // RSC Adv. 2015. V. 5. P. 31759–31767. https://doi.org/10.1039/C5RA01872B
  26. Yang J., Sun W., He Z., Yu Ch., Bao G., Li Y., Hong L., Wang R. // Org. Lett. 2018. V. 20. P. 7080–7084. https://doi.org/10.1021/acs.orglett.8b03020
  27. Verma S.M., Singh R.M. // J. Org. Chem. 1975. V. 40. P. 897–901. https://doi.org/10.1021/jo00895a019
  28. Bodtke A., Otto H.-H. // Pharmazie. 2005. V. 60. P. 803–813.
  29. Ranganathan D., Haridas V., Kurur S., Thomas A., Madhusudanan K.P., Nagaraj R., Kunwar A.C., Sarma A.V.S., Karle I.L. // J. Am. Chem. Soc. 1998. V. 120. P. 8448–8460. https://doi.org/10.1021/ja980143+
  30. Фирстова А.А., Кофанов Е.Р., Закшевская В.М., Ковалева М.И. // Биоорг. химия. 2019. Т. 45. С. 204–213. [Firstova A.A., Kofanov E.R., Zakshevskaya V.M., Kovaleva M.I. // Russ. J. Bioorg. Chem. 2019. V. 45. P. 204–213.] https://doi.org/10.1134/S0132342319030023
  31. Травень В.Ф. // Органическая химия: учебник для вузов; в 2 т. Москва: ИКЦ “Академкнига”, 2004.
  32. Островский В.А. // Соросовский образовательный журнал. 2000. Т. 6. № 11. С. 30–34.
  33. Межфазный катализ: химия, катализаторы и применение / Под ред. Старкс Ч.М. Москва: Химия, 1991. 157 с.
  34. Jaszay Z.M., Petnehazy I., Tokke L. // Synthesis. 1989. P. 745–747. https://doi.org/10.1055/s-1989-27380
  35. Прохорова И.М., Ковалева М.И., Фомичева А.Н. // Генетическая токсикология: учебное пособие. Ярославль, 2005. 132 с.
  36. Легостаева Т.Б., Ингель Ф.И., Антипанова Н.А., Ююрченко В.В., Юрцева Н.А., Котляр Н.Н. // Гигиена и санитария. 2010. № 4. С. 47–52.
  37. Груммитт О. // Синтезы органических препаратов. Москва: Издательство иностранной литературы, 1952.
  38. Безбородова О.А., Панкратов А.А., Немцова Е.Р., Венедиктова Ю.Б., Воронцова М.С., Енгалычева Г.Н., Сюбаев Р.Д. // Ведомости Научного центра экспертизы средств медицинского применения. 2020. Т. 10. № 2. С. 96–110.

Дополнительные файлы


© А.А. Фирстова, Е.Р. Кофанов, М.И. Ковалева, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах