Synthesis and Biological Activity of Esters Based on Cycloalkenedicarboxylic Acids

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Previously undescribed esters based on N-substituted imides of cycloaliphatic carboxylic acids have been synthesized in high yields and efficient methods for their preparation have been presented. Toxicological studies of the obtained compounds were carried out using various test objects (Chlorella vulgaris, Allium cepa, Drosophila melanogaster). It was shown that the studied compounds are not active against D. melanogaster, increase the frequency of mutations in C. vulgaris and have the ability to induce chromosomal rearrangements in A. cepa. The synthesized compounds can be used in the development of antitumor drugs.

About the authors

A. A. Firstova

Yaroslavl State Technical University

Author for correspondence.
Email: firstova.a.a@mail.ru
Russia, 150023, Yaroslavl, Moskovsky prosp. 88

E. R. Kofanov

Yaroslavl State Technical University

Email: firstova.a.a@mail.ru
Russia, 150023, Yaroslavl, Moskovsky prosp. 88

M. I. Kovaleva

Yaroslavl State University named after P.G. Demidov

Email: firstova.a.a@mail.ru
Russia, 150003, Yaroslavl, ul. Sovetskaya 14

References

  1. Yabuno T., Konishi N., Nakamura M., Tsuzuki T., Tsunoda S., Sakaki T., Hiasa Y. // J. Neurooncol. 1998. V. 36. P. 105–112. https://doi.org/10.1023/a:1005878402133
  2. Perez-Tomas R. // Curr. Med. Chem. 2006. V. 13. P. 1859–1876. https://doi.org/10.2174/092986706777585077
  3. Fu X., Palomar A.J., Hong E.P. // J. Nat. Prod. 2004. V. 67. P. 1415–1418. https://doi.org/10.1021/np0499620
  4. Bailly C., Carrasco C., Joubert A. // Biochemistry. 2003. V. 42. P. 4136–4150. https://doi.org/10.1021/bi027415c
  5. Richardson M.B., Gabriel K.N., Garcia J.A. // Bioconjugate Chem. 2020. V. 31. P. 1449−1462. https://doi.org/10.1021/acs.bioconjchem.0c00143
  6. Yang H., Dou W., Lou J., Leng Y., Shen J. // Bioorg. Med. Chem. Lett. 2008. V. 18. P. 1340–1345. https://doi.org/10.1016/j.bmcl.2008.01.020
  7. Arnaldi G., Angeli A., Atkinson A.B., Bertagna X., Cavagnini F., Chrousos G.P., Fava G.A., Findling J.W., Gaillard R.C., Grossman A.B., Kola B., Lacroix A., Mancini T., Mantero F., Newell-Price J., Nieman L. K., Sonino N., Vance M.L., Giustina A., Boscaro M.J. // J. Clin. Endocrinol. Metab. 2003. V. 88. P. 5593–5602. https://doi.org/10.1210/jc.2003-030871
  8. Grundy S.M., Brewer H.B., Cleeman J.I., Smith S.C., Lenfant C. // Circulation. 2004. V. 109. P. 433–438. https://doi.org/10.1161/01.CIR.0000111245.75752.C6
  9. Inagaki K., Otsuka F., Miyoshi T., Watanabe N., Suzuki J., Ogura T., Makino H. // Endocr. J. 2004. V. 51. P. 201–206. https://doi.org/10.1507/endocrj.51.201
  10. Diederich S., Grossmann C., Hanke B., Quinkler M., Herrmann M., Bahr V., Oelkers W. // Eur. J. Endocrinol. 2000. V. 142. P. 200–207. https://doi.org/10.1530/eje.0.1420200
  11. Alberts P., Nilsson C., Selen G., Engblom L.O.M., Edling N.H.M., Norling S., Klingstrom G., Larsson C., Forsgren M., Ashkzari M., Nilsson C.E., Fiedler M., Bergqvist E., Ohman B., Bjorkstrand E., Abrahmsen L.B. // Endocrinology. 2003. V. 144. P. 4755–4762. https://doi.org/10.1210/en.2003-0344
  12. Gu X., Dragovic J., Koo G.C., Koprak S.L., LeGrand C., Mundt S.S., Shah K., Springer M.S., Tan E.Y., Thieringer R., Hermanowski-Vosatka A., Zokian H.J., Balkovec J.M., Waddell S.T. // Bioorg. Med. Chem. Lett. 2007. V. 17. P. 2838–2843. https://doi.org/10.1016/j.bmcl.2005.08.052
  13. Miguet L., Zhang Z., Barbier M., Grigorov M.G. // J. Comput. Aided Mol. Des. 2006. V. 20. P. 67–81. https://doi.org/10.1007/s10822-006-9037-3
  14. Schuster D., Maurer E.M., Laggner C., Nashev L.G., Wilckens T., Langer T., Odermatt A. // J. Med. Chem. 2006. V. 49. 3454–3466. https://doi.org/10.1021/jm0600794
  15. Gierasch L.M. // Annu. Rev. Biochem. 1992. V. 61. P. 387–418. https://doi.org/10.1146/annurev.bi.61.070192.002131
  16. Liskamp R.M. // Recl. Trav. Chim. Pays-Bas. 1994. V. 113. P. 1–19. https://doi.org/10.1002/recl.19941130102
  17. Gante J. // Angew. Chem. Int. Ed. Engl. 1994. V. 33. P. 1699–1720. https://doi.org/10.1002/anie.199416991
  18. Jiang K., Shimotakahara H., Luo M., Otani M., Nakamura H., Moselhy S.S., Abualnaja K.O., Labeed Al-Malki A., Kumosani T. A., Kitahata N., Takeshi N., Nakajima M., Asami T. // Bioorg. Med. Chem. Lett. 2017. V. 27. P. 3678–3682. https://doi.org/10.1016/j.bmcl.2017.07.012
  19. Jiang K., Otani M., Shimotakahara H., Yoon J.-M., Park S.-H., Miyaji T., Nakano T., Nakamura H., Nakajima M., Asami T. // Plant Physiology. 2017. V. 173. P. 825–835. https://doi.org/10.1104/pp.16.00937
  20. Gupta R., Chakrabarty S.K. // Plant Signal Behav. 2013. V. 8. P. 255–264. https://doi.org/10.4161/psb.25504
  21. Rodaway S.J., Gates D.W., Brindle C. // Plant Growth Regul. 1991. V. 10. P. 243–259. https://doi.org/10.1007/BF00024415
  22. Gallego-Giraldo C., Hu J., Urbez C., Gomez M.D., Sun T.-P., Perez-Amador M.A. // Plant J. 2014. V. 79. P. 1020–1032. https://doi.org/10.1111/tpj.12603
  23. Chandler P.M., Harding C.A., Ashton A.R., Mulcair M.D., Dixon N.E., Mander L.N. // Mol. Plant. 2008. V. 1. P. 285–294. https://doi.org/10.1093/mp/ssn002
  24. Sukiran N.A., Pollastri S., Steel P.G., Knight M.R. // Plant Direct. 2022. V. 26. P. 394–398. https://doi.org/10.1002/pld3.398
  25. Wang X., Baloch S.K., Ma L., Wang X., Shi J., Zhu Y., Wu F., Pang Y., Lu G., Qi J., Gu H., Yang Y. // RSC Adv. 2015. V. 5. P. 31759–31767. https://doi.org/10.1039/C5RA01872B
  26. Yang J., Sun W., He Z., Yu Ch., Bao G., Li Y., Hong L., Wang R. // Org. Lett. 2018. V. 20. P. 7080–7084. https://doi.org/10.1021/acs.orglett.8b03020
  27. Verma S.M., Singh R.M. // J. Org. Chem. 1975. V. 40. P. 897–901. https://doi.org/10.1021/jo00895a019
  28. Bodtke A., Otto H.-H. // Pharmazie. 2005. V. 60. P. 803–813.
  29. Ranganathan D., Haridas V., Kurur S., Thomas A., Madhusudanan K.P., Nagaraj R., Kunwar A.C., Sarma A.V.S., Karle I.L. // J. Am. Chem. Soc. 1998. V. 120. P. 8448–8460. https://doi.org/10.1021/ja980143+
  30. Фирстова А.А., Кофанов Е.Р., Закшевская В.М., Ковалева М.И. // Биоорг. химия. 2019. Т. 45. С. 204–213. [Firstova A.A., Kofanov E.R., Zakshevskaya V.M., Kovaleva M.I. // Russ. J. Bioorg. Chem. 2019. V. 45. P. 204–213.] https://doi.org/10.1134/S0132342319030023
  31. Травень В.Ф. // Органическая химия: учебник для вузов; в 2 т. Москва: ИКЦ “Академкнига”, 2004.
  32. Островский В.А. // Соросовский образовательный журнал. 2000. Т. 6. № 11. С. 30–34.
  33. Межфазный катализ: химия, катализаторы и применение / Под ред. Старкс Ч.М. Москва: Химия, 1991. 157 с.
  34. Jaszay Z.M., Petnehazy I., Tokke L. // Synthesis. 1989. P. 745–747. https://doi.org/10.1055/s-1989-27380
  35. Прохорова И.М., Ковалева М.И., Фомичева А.Н. // Генетическая токсикология: учебное пособие. Ярославль, 2005. 132 с.
  36. Легостаева Т.Б., Ингель Ф.И., Антипанова Н.А., Ююрченко В.В., Юрцева Н.А., Котляр Н.Н. // Гигиена и санитария. 2010. № 4. С. 47–52.
  37. Груммитт О. // Синтезы органических препаратов. Москва: Издательство иностранной литературы, 1952.
  38. Безбородова О.А., Панкратов А.А., Немцова Е.Р., Венедиктова Ю.Б., Воронцова М.С., Енгалычева Г.Н., Сюбаев Р.Д. // Ведомости Научного центра экспертизы средств медицинского применения. 2020. Т. 10. № 2. С. 96–110.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (105KB)
3.

Download (87KB)
4.

Download (123KB)
5.

Download (281KB)
6.

Download (48KB)
7.

Download (64KB)
8.

Download (72KB)

Copyright (c) 2023 А.А. Фирстова, Е.Р. Кофанов, М.И. Ковалева

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies