Electron microscopy of stable electrophoretic fractions of natural humic acids – the key to the understanding of their structural organization

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Transmission electron microscopy (TEM) with contrast staining by uranyl acetate solution was used to study morphological differences between soil humic acids (HAs) and their A, B and C + D fractions obtained using coupling preparative low-pressure size exclusion chromatography and analytical polyacrylamide gel electrophoresis. The electrophoretic mobility of fractions varied in order C + D > B > A. The distribution of various morphological elements between fractions showed that large structures such as vesicle-like formations 70–150 nm long and 30–80 nm wide with clear edges were found exclusively in fraction A and occupied ~55% of the TEM image area. On the other hand, long fibrils with a length of 60–100 nm, a width of 4–6 nm and a thickness of 2–3 nm, as well as their bundles with a length of >150 nm and a diameter of 30–70 nm were identified only in the C + D fraction and occupied ~59 % area of TEM images. Smaller morphological elements such as point particles with a diameter of 2–3 nm, ring particles with a diameter of 4–6 nm, worm-shaped short particles with a length of 20–30 nm, and spheroids with a diameter of 10– 30 nm were observed in all samples, but in varying quantities. Significant morphological differences between the fractions can be explained by their composition, previously established by using a few physico-chemical methods. The ratio Car(165–108 ppm)/Calk(108–0 ppm), or aromaticity index, calculated from 13C-NMR, could be one of the indicators of the various morphological structures formation. The obtained TEM results clearly confirm the supramolecular organization of soil HAs.

Full Text

Restricted Access

About the authors

O. E. Trubetskaya

Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS

Author for correspondence.
Email: olegi03@yahoo.com
Russian Federation, prosp. Nauki, 6, Pushchino, 142290

O. M. Selivanova

Institute of Protein Research, Russian Academy of Sciences

Email: olegi03@yahoo.com
Russian Federation, prosp. Nauki, 4, Pushchino, 142290

V. V. Rogachevsky

Institute of Cell Biophysics, Russian Academy of Sciences

Email: olegi03@yahoo.com
Russian Federation, prosp. Nauki, 3, Pushchino, 142290

O. A. Trubetskoj

Institute of Basic Biological Problems, Russian Academy of Sciences

Email: olegi03@yahoo.com
Russian Federation, prosp. Nauki, 2, Pushchino, 142290

References

  1. Кононова М.М. // Органическое вещество почв. М.: Изд-во АН СССР, 1963. 314 с.
  2. Wershaw R.L. Evaluation of Conceptual Models of Natural Organic Matter (Humus) From a Consideration of the Chemical and Biochemical Processes of Humification, U.S. Geological Survey, Reston, VA. 2004. Scientific Investigations Report No. 2004-5121.
  3. Kleber M., Johnson M.G. // Adv. Agron. 2010. V. 106. Р. 77–142. https://doi.org/10.1016/S0065-2113(10)06003-7
  4. Stevenson F.J. // Humus chemistry – Genesis, Composition, Reactions (2nd ed.). New York, John Wiley. 1994. 496 p.
  5. Schmidt M.W.I., Torn M.S., Abiven S., Dittmar T., Guggenberger G., Janssens I.A., Kleber M., KӧgelKnabner I., Lehmann J., Manning D.A.C., Nannipieri P., Rasse D.P., Weiner S., Trumbore S.E. // Nature. 2011. V. 478. Р. 49–56. https://doi.org/10.1038/nature10386
  6. Zepp R.G., Schlotzhauer P.F., Sink R.M. // Environ. Sci. Technol. 1985. V. 19. P. 74–81.
  7. Христева Л.А., Пшеничный А.Е., Пивоваров Л.Р. // Гуминовые удобрения. Теория и практика их применения. Изд-во Харьковского ун-та, 1957. С. 109– 126.
  8. Canellas L.P., Piccolo A., Dobbss L.B., Spaccini R., Olivares F.L., Zandonadi D.B., Façanha A.R. // Chemosphere. 2010. V. 78. P. 457–466. https://doi.org/10.1016/j.chemosphere.2009.10.018
  9. Martinez-Balmon D., Spassini R., Aguiar N.O., Novotny E.H., Olivares F.L., Canellas L.P. // J. Agric. Food Chem. 2014. V. 62. P. 11412–11419. https://doi.org/10.1021/jf504629c
  10. Boyle E.S., Guerriero N., Thiallet A., Vecchio, R.D., Blough N.V. // Environ. Sci. Technol. 2009. V. 43. P. 2262–2268. https://doi.org/10.1021/es803264g
  11. Alberts J.J., Takacs M. // Org. Geochem. 2004. V. 35. P. 243–256. https://doi.org/10.1016/j.orggeochem.2003.11.007
  12. Lehmann J., Kleber M. // Nature. 2015. V. 528. Р. 60–68. https://doi.org/10.1038/nature16069
  13. Kleber M., Lehmann J. // J. Environ. Qual. 2019. V. 48. P. 207–216. https://doi.org/10.2134/jeq2019.01.0036
  14. Haworth R.D. // Soil Sci. 1971. V. 111. Р. 71–79. https://doi.org/10.1097/00010694-197101000-00009
  15. Schulten H.R., Schnitzer M. // Soil Science. 1997. V. 162. P. 115–130.
  16. MacCarthy P. // Soil Sci. 2001. V. 166. Р. 738–751. https://doi.org/10.1097/00010694-200111000-00003
  17. Kleinhempel D. // Archives of Agronomy and Soil Science. 1970. V. 14. P. 3–14.
  18. Farmer V.C., Pisaniello D.L. // Nature. 1985. V. 313. P. 474–475. https://doi.org/10.1038/313474a0
  19. Shnitzer M., Neyroud A. // Fuel. 1975. V. 54. P. 17–19.
  20. Saiz-Jimenez C. // Environ. Sci. Technol. 1994. V. 28. P. 197–200.
  21. Schnitzer M. // Soil Sci. 1991. V. 151. P. 41–58.
  22. Стид Д.В., Этвуд Д.Л. // Супрамолекулярная химия (в 2 т.). М.: Академкнига, 2007.
  23. Wershaw R.L. // J. Contam. Hydrol. 1986. V. 1. P. 29–45. https://doi.org/10.1016/0169-7722(86)90005-7
  24. Piccolo A. // Soil Sci. 2001. V. 166. P. 810–832.
  25. Kingery W.L., Simpson A.J., Hayes M.H.B., Hayes M.A., Locke M.A., Hicks R.P. // Soil Sci. 2000. V. 165. P. 483–494.
  26. Simpson A.J., Kingery W.L., Hayes M.H., Spraul M., Humpfer E., Dvortsak P., Kerssebaum R., Hofmann M. // Naturwissenschaften. 2002. V. 89. P. 84–88.
  27. Piccolo A., Conte P., Trivellone E., Van Lagen B. // Environ. Sci. Tech. 2002. V. 36 Р. 76–84. https://doi.org/10.1021/es010981v
  28. Trubetskoj O.A., Trubetskaya O.E., Afanas’eva G.V., Reznikova O.I., Saiz-Jimenez C. // J. Chromatogr. A. 1997. V. 767. P. 285–292. https://doi.org/10.1016/S0021-9673(97)00019-8
  29. Trubetskaya O.E., Trubetskoj O.A., Afanas’eva G.V., Reznikova O.I., Markova L.F., Muranova T.A. // Environ. Int. 1998. V. 24. P. 573–581. https://doi.org/10.1016/S0160-4120(98)00036-1
  30. Saiz-Jimenez C., Hermosin B., Trubetskaya O., Reznikova O., Afanas’eva G., Trubetskoj O. // Geoderma. 2006. V. 131. P. 22–32. https://doi.org/10.1016/j.geoderma.2005.03.001
  31. Richard C., Trubetskaya O.E., Trubetskoj O.A., Reznikova O.I., Afanas’eva G.V., Aguer J.-P., Guyot G. // Environ. Sci. Technol. 2004. V. 38. P. 2052–2057. https://doi.org/10.1021/es030049f
  32. Trubetskoj O.A., Hatcher P.G., Trubetskaya O.E. // Chem. Ecol. 2010. V. 26. P. 315–325. https://doi.org/10.1080/02757541003785825
  33. Trubetskoj O.A., Richard C., Guyot G., Voyard G., Trubetskaya O.E. // J. Chromatogr. A. 2012. V. 1243. P. 62–68. https://doi.org/10.1016/j.chroma.2012.04.043
  34. Трубецкой О.А., Трубецкая О.Е. // Почвоведение. 2017. № 9. С. 1057–1064. https://doi.org/10.7868/S0032180X17090088
  35. Orlov D.S., Ammosova Ya.M., Glebova G.I. // Geoderma. 1975. V. 13. P. 211–229. https://doi.org/10.1016/0016-7061(75)90019-1
  36. Stevenson I.L., Schnitzer M. // Soil Sci. 1982. V. 133. P. 179–185. https://doi.org/10.1097/00010694-198203000-00007
  37. Stevenson I.L., Schnitzer M. // Soil Sci. 1984. V. 138. P. 123–126.
  38. Kerner M., Hohenberg H., Ertl S., Reckermannk M., Spitzy A. // Nature. 2003. V. 422. P. 150–154. https://doi.org/10.1038/nature01469
  39. Dong V., Wan L., Cai J., Fang Q., Chi V, Chen G. // Sci. Rep. 2015. V. 5. P. 10037. https://doi.org/10.1038/srep10037
  40. Vasiliev V.D., Selivanova O.M., Baranov V.I., Spirin A.S. // FEBS Lett. 1983. V. 155. P. 167–172. https://doi.org/10.1016/0014-5793(83)80232-4
  41. Peschek J., Braun N., Franzmann T.M., Georgalis Y., Haslbeck M., Weinkauf S., Buchner J. // PNAS. 2009. V. 106. Р. 13272–13277. https://doi.org/10.1073/pnas.0902651106
  42. Selivanova O.M., Surin A.K., Marchenkov V.V., Dzhus U.F., Grigorashvili E.I., Suvorina M.Y., Glyakina A.V., Dovidchenko N.V., Galzitskaya O.V. // J. Alzheimers Dis. 2016. V. 54. P. 821–830. https://doi.org/10.3233/JAD-160405
  43. Galzitskaya O.V., Selivanova O.M. // J. Alzheimers Dis. 2017. V. 59. P. 785–795. https://doi.org/10.3233/JAD-170230
  44. Traina S.J., Novak J., Smeck N.E. // J. Environ. Qual. 1990. V. 19. P. 151−153. https://doi.org/10.2134/jeq1990.004724250019000 10023x
  45. Трубецкая О.Е., Трубецкой О.А. // Почвоведение. 2021. № 7. С. 862–870. https://doi.org/10.31857/S0032180X21060150

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Electrophoresis of chernozem humic acids and fractions A, B, C + D in 10% PAAG (a); fractionation of humic acids on a column with Sephadex G-75 (b); absorption spectra of humic acids and fractions at a concentration of preparations of 20 mg/l (c); 13C NMR spectra (d) and distribution of fluorescence intensity of preparations when illuminated with UV light of a wavelength of 312 nm (d).

Download (156KB)
3. Fig. 2. TEM images of chernozem HA preparations and fractions A, B, C + D. Numbers 1–7 correspond to the ordinal numbers of the morphological forms presented in Table 2: point particles (1), ring particles (2), worm-like particles (3), spheroids (4), droplet vesicle-like formations (5), long fibrils (6), bundles of long fibrils (7). The aromaticity index (AI), i.e. Sarom/Salif, was calculated on the basis of 13C NMR spectra by the ratio of the areas above the chemical shift regions of aromatic (165–108 ppm) and aliphatic (108–0 ppm) carbon according to our previously published data [32].

Download (273KB)
4. Fig. 3. TEM images of point (1) and ring (2) particles in various micrographs of chernozem HA preparations and fractions A, B, C + D; examples of worm-like particles (3), spheroids (4), long fibrils in two different projections (6), and bundles of long fibrils (7).

Download (127KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies