Hybrid proteins containing proteorhodopsin from Exiguobacterium sibiricum

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The genes of hybrid proteins including Exiguobacterium sibiricum proteorhodopsin (ESR) and various N-terminal soluble domains have been constructed. Effective synthesis in Escherichia coli cells was observed only in the case of hybrids with chaperone Caf1M and maltose-binding protein MBP expressed as precursors with their own signal sequences. The study of the isolated MBP-ESR protein in micelles and proteoliposomes demonstrated formation and decay of the main photocycle intermediates at pH > 8. The photoelectric response of the hybrid proteins Caf-ESR and MBP-ESR is comparable in amplitude to the wild-type ESR response, indicating their homogeneous orientation in the membrane. The obtained constructions can be used to create bacterial expression systems for various retinal proteins, ensuring their uniform incorporation into proteoliposomes.

Full Text

Restricted Access

About the authors

L. E. Petrovskaya

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS; Moscow Institute of Physics and Technology

Author for correspondence.
Email: lpetr65@yahoo.com
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997; Institutskiy per. 9, Dolgoprudny, Moscow Region, 141701

E. A. Kryukova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS; Emanuel Institute of Biochemical Physics

Email: lpetr65@yahoo.com
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997; ul. Kosygina 4, Moscow, 119334

V. A. Bolshakov

Lomonosov Moscow State University

Email: lpetr65@yahoo.com

Faculty of Biology

Russian Federation, Leninskie gory 1/11, Moscow, 119234

E. P. Lukashev

Lomonosov Moscow State University

Email: lpetr65@yahoo.com

Faculty of Biology

Russian Federation, Leninskie gory 1/11, Moscow, 119234

S. A. Siletsky

Lomonosov Moscow State University

Email: lpetr65@yahoo.com

Belozersky Institute of Physico-Chemical Biology

Russian Federation, Leninskye gory 1/40, Moscow, 119992

M. D. Mamedov

Lomonosov Moscow State University

Email: lpetr65@yahoo.com

Belozersky Institute of Physico-Chemical Biology

Russian Federation, Leninskye gory 1/40, Moscow, 119992

R. V. Sudakov

Lomonosov Moscow State University

Email: lpetr65@yahoo.com

Belozersky Institute of Physico-Chemical Biology

Russian Federation, Leninskye gory 1/40, Moscow, 119992

D. A. Dolgikh

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS; Emanuel Institute of Biochemical Physics; Lomonosov Moscow State University

Email: lpetr65@yahoo.com

Faculty of Biology, Lomonosov Moscow State University

Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997; ul. Kosygina 4, Moscow, 119334; Leninskie gory 1/11, Moscow, 119234

M. P. Kirpichnikov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS; Lomonosov Moscow State University

Email: lpetr65@yahoo.com

Faculty of Biology, Lomonosov Moscow State University

Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997; Leninskie gory 1/11, Moscow, 119234

References

  1. Govorunova E.G., Sineshchekov O.A., Li H., Spudich J.L. // Annu. Rev. Biochem. 2017. V. 86. P. 845–872. https://doi.org/10.1146/annurev-biochem-101910144233
  2. Gushchin I., Gordeliy V. // In: Membrane Protein Complexes: Structure and Function. Subcellular Biochemistry. V. 87 / Eds. Harris J., Boekema E. Singapore: Springer Singapore, 2018. P. 19–56. https://doi.org/10.1007/978-981-10-7757-9_2
  3. Kandori H. // Biophys. Rev. 2020. V. 12. P. 355–361. https://doi.org/10.1007/s12551-020-00645-0
  4. Brown L.S. // Biochim. Biophys. Acta Biomembr. 2022. V. 1864. P. 183867. https://doi.org/10.1016/j.bbamem.2022.183867
  5. Lanyi J.K. // Biochim. Biophys. Acta. 2006. V. 1757. P. 1012–1018. https://doi.org/10.1016/j.bbabio.2005.11.003
  6. Oesterhelt D., Stoeckenius W. // Nature. 1971. V. 233. P. 149–152. https://doi.org/10.1038/newbio233149a0
  7. Lanyi J.K., Luecke H. // Curr. Opin. Str. Biol. 2001. V. 11. P. 415–419. https://doi.org/10.1016/S0959-440X(00)00226-8
  8. Ovchinnikov Y.A., Abdulaev N.G., Feigina M.Y., Kiselev A.V., Lobanov N.A. // FEBS Lett. 1979. V. 100. P. 219–224. https://doi.org/10.1016/0014-5793(79)80338-5
  9. Ovchinnikov Y.A. // Photochem. Photobiol. 1987. V. 45. P. 909–914. https://doi.org/10.1111/j.1751-1097.1987.tb07902.x
  10. Oesterhelt D., Stoeckenius W. // Proc. Natl. Acad. Sci. USA. 1973. V. 70. P. 2853–2857. https://doi.org/10.1073/pnas.70.10.2853
  11. Gómez-Consarnau L., Raven J.A., Levine N.M., Cutter L.S., Wang D., Seegers B., Arístegui J., Fuhrman J.A., Gasol J.M., Sañudo-Wilhelmy S.A. // Sci. Adv. 2019. V. 5. P. eaaw8855. https://doi.org/10.1126/sciadv.aaw8855
  12. DeLong E.F., Beja O. // PLoS Biol. 2010. V. 8. e1000359. https://doi.org/10.1371/journal.pbio.1000359
  13. Lyukmanova E., Shenkarev Z., Khabibullina N., Kopeina G., Shulepko M., Paramonov A., Mineev K., Tikhonov R., Shingarova L., Petrovskaya L., Dolgikh D., Arseniev A., Kirpichnikov M. // Biochim. Biophys. Acta. 2012. V. 1818. P. 349– 358. https://doi.org/10.1016/j.bbamem.2011.10.020
  14. Amati A.M., Graf S., Deutschmann S., Dolder N., von Ballmoos C. // Biochem. Soc. Trans. 2020. V. 48. P. 1473–1492. https://doi.org/10.1042/bst20190966
  15. Racker E., Stoeckenius W. // J. Biol. Chem. 1974. V. 249. P. 662–663. https://doi.org/10.1016/S0021-9258(19)43080-9
  16. Deisinger B., Nawroth T., Zwicker K., Matuschka S., John G., Zimmer G., Freisleben H.-J. // Eur. J. Biochem. 1993. V. 218. P. 377–383. https://doi.org/10.1111/j.1432-1033.1993.tb18387.x
  17. Pitard B., Richard P., Duñarach M., Girault G., Rigaiud J.-L. // Eur. J. Biochem. 1996. V. 235. P. 769–778. https://doi.org/10.1111/j.1432-1033.1996.00769.x
  18. Lee K.Y., Park S.-J., Lee K.A., Kim S.-H., Kim H., Meroz Y., Mahadevan L., Jung K.-H., Ahn T.K., Parker K.K. // Nat. Biotechnol. 2018. V. 36. P. 530–535. https://doi.org/10.1038/nbt.4140
  19. Choi H.-J., Montemagno C.D. // Nano Lett. 2005. V. 5. P. 2538–2542. https://doi.org/10.1021/nl051896e
  20. Rigaud J.-L., Pitard B., Levy D. // Biochim. Biophys. Acta. 1995. V. 1231. P. 223–246. https://doi.org/10.1016/0005-2728(95)00091-v
  21. Shen H. H., Lithgow T., Martin L. // Int. J. Mol. Sci. 2013. V. 14. P. 1589–1607. https://doi.org/10.3390/ijms14011589
  22. Bogdanov M., Dowhan W., Vitrac H. // Biochim. Biophys. Acta. 2014. V. 1843. P. 1475–1488. https://doi.org/10.1016/j.bbamcr.2013.12.007
  23. Cymer F., Von Heijne G., White S.H. // J. Mol. Biol. 2015. V. 427. P. 999–1022. https://doi.org/10.1016/j.jmb.2014.09.014
  24. Huang K.-S., Bayley H., Khorana H.G. // Proc. Nat. Acad. Sci. USA. 1980. V. 77. P. 323–327. https://doi.org/10.1073/pnas.77.1.323
  25. Dioumaev A.K., Wang J.M., Bálint Z., Váró G., Lanyi J.K. // Biochemistry. 2003. V. 42. P. 6582– 6587. https://doi.org/10.1021/bi034253r
  26. Seigneuret M., Rigaud J.-L. // FEBS Lett. 1985. V. 188. P. 101–106. https://doi.org/10.1016/0014-5793(85)80883-8
  27. Seigneuret M., Rigaud J.-L. // FEBS Lett. 1988. V. 228. P. 79–84. https://doi.org/10.1016/0014-5793(88)80589-1
  28. Tunuguntla R., Bangar M., Kim K., Stroeve P., Ajo-Franklin C.M., Noy A. // Biophys. J. 2013. V. 105. P. 1388–1396. https://doi.org/10.1016/j.bpj.2013.07.043
  29. Pfleger N., Wörner A.C., Yang J., Shastri S., Hellmich U.A., Aslimovska L., Maier M.S., Glaubitz C. // Biochim. Biophys. Acta. 2009. V. 1787. P. 697–705. https://doi.org/10.1016/j.bbabio.2009.02.022
  30. Lee H., Kim H. // Biochem. Biophys. Res. Commun. 2014. V. 453. P. 268–276. https://doi.org/10.1016/j.bbrc.2014.05.111
  31. Ritzmann N., Thoma J., Hirschi S., Kalbermatter D., Fotiadis D., Muller D.J. // Biophys. J. 2017. V. 113. P. 1181–1186. https://doi.org/10.1016/j.bpj.2017.06.022
  32. Petrovskaya L.E., Lukashev E.P., Chupin V.V., Sychev S.V., Lyukmanova E.N., Kryukova E.A., Ziganshin R.H., Spirina E.V., Rivkina E.M., Khatypov R.A., Erokhina L.G., Gilichinsky D.A., Shuvalov V.A., Kirpichnikov M.P. // FEBS Lett. 2010. V. 584. P. 4193–4196. https://doi.org/10.1016/j.febslet.2010.09.005
  33. Петровская Л.Е., Балашов С.П., Лукашев Е.П., Имашева Э.С., Гущин И.Ю., Дюмаев А.К., Рубин А.Б., Долгих Д.А., Горделий В.И., Лани Я.К., Кирпичников М.П. // Биохимия. 2015. Т. 80. С. 814–828. [Petrovskaya L., Balashov S., Lukashev E., Imasheva E., Gushchin I.Y., Dioumaev A., Rubin A., Dolgikh D., Gordeliy V., Lanyi J., Kirpichnikov M. // Biochemistry (Moscow). 2015. V. 80. P. 688–700]. https://doi.org/10.1134/S000629791506005X
  34. Петровская Л.Е., Силецкий С.А., Лукашев Е.П., Балашов С.П., Долгих Д.А., Кирпичников М.П. // Биохимия. 2023. Т. 88. С. 1867–1879. [Petrovskaya L.E., Siletsky S.A., Mamedov M.D., Lukashev E.P., Balashov S.P., Dolgikh D.A., Kirpichnikov M.P. // Biochemistry (Moscow). 2023. V. 88. P. 1544–1554]. https://doi.org/10.1134/s0006297923100103
  35. Balashov S.P., Petrovskaya L.E., Imasheva E.S., Lukashev E.P., Dioumaev A.K., Wang J.M., Sychev S.V., Dolgikh D.A., Rubin A.B., Kirpichnikov M.P., Lanyi J.K. // J. Biol. Chem. 2013. V. 288. P. 21254–21265. https://doi.org/10.1074/jbc.M113.465138
  36. Siletsky S.A., Mamedov M.D., Lukashev E.P., Balashov S.P., Dolgikh D.A., Rubin A.B., Kirpichnikov M.P., Petrovskaya L.E. // Biochim. Biophys. Acta Bioenerg. 2019. V. 1860. P. 1–11. https://doi.org/10.1016/j.bbabio.2018.09.365
  37. Petrovskaya L.E., Lukashev E.P., Mamedov M.D., Kryukova E.A., Balashov S.P., Dolgikh D.A., Rubin A.B., Kirpichnikov M.P., Siletsky S.A. // Int. J. Mol. Sci. 2023. V. 24. P. 7369. https://doi.org/10.3390/ijms24087369
  38. Петровская Л.Е., Шульга А.А., Бочарова О.В., Ермолюк Я.С., Крюкова Е.А., Чупин В.В., Бломмерс М.Ж.Ж., Арсеньев А.С., Кирпичников М.П. // Биохимия. 2010. Т. 75. C. 1001–1013. [Petrovskaya L., Shulga A., Bocharova O., Ermolyuk Y.S., Kryukova E., Chupin V., Blommers M., Arseniev A., Kirpichnikov M. // Biochemistry (Moscow). 2010. V. 75. P. 881–891]. https://doi.org/10.1134/S0006297910070102
  39. Ishihara G., Goto M., Saeki M., Ito K., Hori T., Kigawa T., Shirouzu M., Yokoyama S. // Prot. Expr. Purif. 2005. V. 41. P. 27–37. https://doi.org/10.1016/j.pep.2005.01.013
  40. Chen G.Q., Gouaux J.E. // Prot. Sci. 1996. V. 5. P. 456–467. https://doi.org/10.1002/pro.5560050307
  41. Lyukmanova E., Shenkarev Z., Khabibullina N., Kulbatskiy D., Shulepko M., Petrovskaya L., Arseniev A., Dolgikh D., Kirpichnikov M. // Aсt. Nat. 2012. V. 4. P. 58–64. https://doi.org/10.32607/20758251-2012-4-4-58-64
  42. Raran-Kurussi S., Waugh D.S. // PLoS One. 2012. V. 7. e49589. https://doi.org/10.1371/journal.pone.0049589
  43. Kapust R.B., Waugh D.S. // Prot. Sci. 1999. V. 8. P. 1668–1674. https://doi.org/10.1110/ps.8.8.1668
  44. Yeliseev A., Zoubak L., Gawrisch K. // Prot. Expr. Purif. 2007. V. 53. P. 153–163. https://doi.org/10.1016/j.pep.2006.12.003
  45. Weiß H.M., Grisshammer R. // Eur. J. Biochem. 2002. V. 269. P. 82–92. https://doi.org/10.1046/j.0014-2956.2002.02618.x
  46. Hu J., Qin H., Gao F.P., Cross T.A. // Prot. Expr. Purif. 2011. V. 80. P. 34–40. https://doi.org/10.1016/j.pep.2011.06.001
  47. Gubellini F., Verdon G., Karpowich N.K., Luff J.D., Boel G., Gauthier N., Handelman S.K., Ades S.E., Hunt J.F. // Mol. Cell. Proteom. 2011. V. 10. P. 930. https://doi.org/10.1074/mcp.M111.007930
  48. Xu L.Y., Link A.J. // Biotechnol. Lett. 2009. V. 31. P. 1775–1782. https://doi.org/10.1007/s10529-009-0075-5
  49. Petrovskaya L.E., Ziganshin R.H., Kryukova E.A., Zlobinov A.V., Gapizov S.S., Shingarova L.N., Mironov V.A., Lomakina G.Y., Dolgikh D.A., Kirpichnikov M.P. // Appl. Biochem. Biotechnol. 2021. V. 193. P. 3672–3703. https://doi.org/10.1007/s12010-021-03634-5
  50. Balashov S.P., Petrovskaya L.E., Lukashev E.P., Imasheva E.S., Dioumaev A.K., Wang J.M., Sychev S.V., Dolgikh D.A., Rubin A.B., Kirpichnikov M.P., Lanyi J.K. // Biochemistry. 2012. V. 51. P. 5748–5762. https://doi.org/10.1021/bi300409m
  51. Siletsky S.A., Mamedov M.D., Lukashev E.P., Balashov S.P., Petrovskaya L.E. // Biophys. Rev. 2022. V. 14. P. 771–778. https://doi.org/10.1007/s12551-022-00986-y
  52. Drachev L.A., Jasaitis A.A., Kaulen A.D., Kondrashin A.A., Liberman E.A., Nemecek I.B., Ostroumov S.A., Semenov A.Y., Skulachev V.P. // Nature. 1974. V. 249. P. 321–324. https://doi.org/10.1038/249321a0
  53. Siletsky S.A., Mamedov M.D., Lukashev E.P., Balashov S.P., Dolgikh D.A., Rubin A.B., Kirpichnikov M.P., Petrovskaya L.E. // Biochim. Biophys. Acta. 2016. V. 1857. P. 1741–1750. https://doi.org/10.1016/j.bbabio.2016.08.004
  54. Petrovskaya L., Gapizov S. S., Shingarova L., Kryukova E., Boldyreva E., Yakimov S., Svirschevskaya E., Lukashev E., Dolgikh D., Kirpichnikov M. // Russ. J. Bioorg. Chem. 2014. V. 40. P. 375–382. https://doi.org/10.1134/S1068162014030121
  55. Siletsky S.A., Lukashev E.P., Mamedov M.D., Borisov V.B., Balashov S.P., Dolgikh D.A., Rubin A.B., Kirpichnikov M.P., Petrovskaya L.E. // Biochim. Biophys. Acta Bioenerg. 2021. V. 1862. P. 148328. https://doi.org/10.1016/j.bbabio.2020.148328

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schemes of the structure of hybrid proteins. SP is the signal sequence. The glycine-serine linker is shown in dark gray, and the hexahistidine sequence is shown in black.

Download (113KB)
3. Fig. 2. Expression of ESR-containing fusion proteins in E. coli cells. Protein electrophoresis in 13% SDS-PAGE (a) and Western blot analysis (b) with anti-His-conjugate of membrane fraction samples from E. coli C43(DE3) cells expressing fusion proteins (lanes 1–7) and wild-type ESR (lane 8). Lanes 1–7 correspond to the numbering of the constructs in Fig. 1. M – protein molecular weight markers (kDa).

Download (63KB)
4. Fig. 3. MBP-ESR photocycle in DDM micelles at pH 7 (a) and pH 9 (b).

Download (102KB)
5. Fig. 4. Kinetics of transmembrane potential difference (ΔΨ) formation by proteoliposomes containing wild-type ESR and fusion proteins at pH 7.5. The arrow marks the moment of laser flash. Data for ESR, Caf-ESR, ESR-Cherry and ESR-Trx are taken from the article by Petrovskaya et al. [37].

Download (90KB)
6. Fig. 5. Kinetics of light-induced changes in absorption at characteristic wavelengths by proteoliposomes containing MBP-ESR at pH 7.5 (a) and 8.5 (b).

Download (91KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies