Heat shock proteins on the surface of tumor cells as a target for anti-tumor therapy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

According to WHO, oncological diseases are the cause of ~5 million people deaths annually. To date, there is no universal solution to fight cancer, despite outstanding achievements in the field of radiotherapy, chemotherapy, and immunotherapy. In this regard, there is a need to develop new approaches to antitumor therapy, in particular based on the search and use of targeted molecules that allow killing tumor cells of various types with high efficiency, without significant toxic effects on healthy organs and tissues. This review presents the characteristics of the main heat shock protein (HSP) families, the features of their expression in tumor cells and the possibility of using monoclonal antibodies to these proteins as a guiding vector for antitumor immunotherapy.

Full Text

Restricted Access

About the authors

A. O. Makarova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS; Lomonosov Moscow State University

Email: amsap@mail.ru
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997; Leninskie Gory 1, Moscow, 119991

V. V. Kostenko

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS; Lomonosov Moscow State University

Email: amsap@mail.ru
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997; Leninskie Gory 1, Moscow, 119991

O. V. Ovsyanikova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS; Lomonosov Moscow State University

Email: amsap@mail.ru
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997; Leninskie Gory 1, Moscow, 119991

E. V. Svirshchevskaya

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS

Email: amsap@mail.ru
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997

G. V. Lutsenko

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS

Email: amsap@mail.ru
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997

A. M. Sapozhnikov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS

Author for correspondence.
Email: amsap@mail.ru
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997

References

  1. Fu Z., Li S., Han S., Shi C., Zhang Y. // Signal Transduct. Target Ther. 2022. V. 7. P. 93. https://doi.org/10.1038/s41392-022-00947-7
  2. Beck A., Goetsch L., Dumontet C., Corvaïa N. // Nat. Rev. Drug. Discov. 2017. V. 16. P. 315–337. https://doi.org/10.1038/nrd.2016.268
  3. Richter K., Haslbeck M., Buchner J. // Mol. Cell. 2010. V. 40. P. 253–266. https://doi.org/10.1016/j.molcel.2010.10.006
  4. Mertz-Henning L.M., Pegoraro C., Maia L.C., Venske E., Rombaldi C.V., Costa de Oliveira A. // Genet. Mol. Res. 2016. V. 15. P. gmr.15027954. https://doi.org/10.4238/gmr.15027954
  5. Cedraz H., Gromboni J.G.G., Garcia A.A.P., Jr., Farias Filho R.V., Souza T.M., Oliveira E.R., Oliveira E.B., Nascimento C.S.D., Meneghetti C., Wenceslau A.A. // PLoS One. 2017. V. 12. P. e0186083. https://doi.org/10.1371/journal.pone.0186083
  6. Taha E.A., Ono K., Eguchi T.// Int. J. Mol. Sci. 2019. V. 20. P. 4588. https://doi.org/10.3390/ijms20184588
  7. García Lorenzo J., León Vintró X., Camacho Pérez de Madrid M. // Acta Otorrinolaringol. Esp. 2016. V. 67. P. 130–134. https://doi.org/10.1016/j.otorri.2015.03.002
  8. Minnaar C.A., Szasz A. // Cells. 2022. V. 11. P. 1838. https://doi.org/10.3390/cells11111838
  9. Youness R.A., Gohar A., Kiriacos C.J., El-Shazly M. // Adv. Exp. Med. Biol. 2023. V. 1409. P. 193–203. https://doi.org/10.1007/5584_2022_736
  10. Lianos G.D., Alexiou G.A., Mangano A., Mangano A., Rausei S., Boni L., Dionigi G., Roukos D.H.// Cancer Lett. 2015. V. 360. P. 114–118. https://doi.org/10.1016/j.canlet.2015.02.026
  11. Wu J., Liu T., Rios Z., Mei Q., Lin X., Cao S. // Trends Pharmacol. Sci. 2017. V. 38. P. 226–256. https://doi.org/10.1016/j.tips.2016.11.009
  12. Yun C.W., Kim H.J., Lim J.H., Lee S.H. // Cells. 2019. V. 9. P. 60. https://doi.org/10.3390/cells9010060
  13. Fernández-Fernández M.R., GrageraM., OchoaIbarrola L., Quintana-Gallardo L., Valpuesta J.M. // FEBS Lett. 2017. V. 591. P. 2648–2660. https://doi.org/10.1002/1873-3468.12751
  14. Havalová H., Ondrovičová G., Keresztesová B., Bauer J.A., Pevala V., Kutejová E., Kunová N. // Int. J. Mol. Sci. 2021. V. 22. P. 8077. https://doi.org/10.3390/ijms22158077
  15. Stangl S., Gehrmann M., Riegger J., Kuhs K., Riederer I., Sievert W., Hube K., Mocikat R., Dressel R., Kremmer E., Pockley A.G., Friedrich L., Vigh L., Skerra A., Multhoff G. // Proc. Natl. Acad. Sci. USA. 2011. V. 108. P. 733–738. https://doi.org/10.1073/pnas.1016065108
  16. Liu Q., Liang C., Zhou L. // Protein Sci. 2020. V. 29. P. 378–390. https://doi.org/10.1002/pro.3725
  17. Fan W., Fan S.S., Feng J., Xiao D., Fan S., Luo J. // PLoS One. 2017. V. 12. P. e0185563. https://doi.org/10.1371/journal.pone.0185563
  18. Shiber A., Ravid T. // Biomolecules. 2014. V. 4. P. 704– 724. https://doi.org/10.3390/biom4030704
  19. Werner C., Stangl S., Salvermoser L., Schwab M., Shevtsov M., Xanthopoulos A., Wang F., Dezfouli A.B., Thölke D., Ostheimer C., Medenwald D., Windberg M., Bache M., Schlapschy M., Skerra A., Multhoff G. // Cancers. 2021. V. 13. P. 3706. https://doi.org/10.3390/cancers13153706
  20. Zolkiewski M., Zhang T., Nagy M. // Arch. Biochem. Biophys. 2012. V. 520. P. 1–6. https://doi.org/10.1016/j.abb.2012.01.012
  21. Wang X.Y., Subjeck J.R. // Int. J. Hyperthermia. 2013. V. 29. P. 364–375. https://doi.org/10.3109/02656736.2013.803607
  22. Hightower L.E., Guidon P.T., Jr. // J. Cell Physiol. 1989. V. 138. P. 257–266. https://doi.org/10.1002/jcp.1041380206
  23. Mambula S.S., Calderwood S.K. // J. Immunol. 2006. V. 177. P. 7849–7857. https://doi.org/10.4049/jimmunol.177.11.7849
  24. Li D.Y., Liang S., Wen J.H., Tang J.X., Deng S.L., Liu Y.X. // Molecules. 2022. V. 27. P. 2361. https://doi.org/10.3390/molecules27072361
  25. Broquet A.H., Thomas G., Masliah J., Trugnan G., Bachelet M. // J. Biol. Chem. 2003. V. 278. P. 21601– 21606. https://doi.org/10.1074/jbc.M302326200
  26. Gehrmann M., Liebisch G., Schmitz G., Anderson R., Steinem C., De Maio A., Pockley G., Multhoff G. // PLoS One. 2008. V. 3. P. e1925. https://doi.org/10.1371/journal.pone.0001925
  27. Bilog A.D., Smulders L., Oliverio R., Labanieh C., Zapanta J., Stahelin R.V., Nikolaidis N. // Biomolecules. 2019. V. 9. P. 152. https://doi.org/10.3390/biom9040152
  28. Pomorski T., Holthuis J.C., Herrmann A., van Meer G. // J. Cell Sci. 2004. V. 117. P. 805–813. https://doi.org/10.1242/jcs.01055
  29. Schilling D., Gehrmann M., Steinem C., De Maio A., Pockley A.G., Abend M., Molls M., Multhoff G. // FASEB J. 2009. V. 23. P. 2467–2477. https://doi.org/10.1096/fj.08-125229
  30. Shevtsov M.A., Komarova E.Y., Meshalkina D.A., Bychkova N.V., Aksenov N.D., Abkin S.V., Margulis B.A., Guzhova I.V. // Oncotarget. 2014. V. 5. P. 3101–3114. https://doi.org/10.18632/oncotarget.1820
  31. Benaroudj N., Ebel C., Ladjimi M.M. // Eur. J. Biochem. 1999. V. 259. P. 379–384. https://doi.org/10.1046/j.1432-1327.1999.00053.x
  32. Rafiee M., Kanwar J.R., Berg R.W., Lehnert K., Lisowska K., Krissansen G.W. // Cancer Gene Ther. 2001. V. 8. P. 974–981. https://doi.org/10.1038/sj.cgt.7700395
  33. Bethke K., Staib F., Distler M., Schmitt U., Jonuleit H., Enk A.H., Galle P.R., Heike M. // J. Immunol. 2002. V. 169. P. 6141–6148. https://doi.org/10.4049/jimmunol.169.11.6141
  34. Luo H., Yang H., Lin Y., Zhang Y., Pan C., Feng P., Yu Y., Chen X. // Oncotarget. 2017. V. 8. P. 98455–98470. https://doi.org/10.18632/oncotarget.21427
  35. Yurinskaya M.M., Kochetkova O.Y., Shabarchina L.I., Antonova O.Y., Suslikov A.V., Evgen’ev M.B., Vinokurov M.G. // Cell Stress Chaperones. 2017. V. 22. P. 163–171. https://doi.org/10.1007/s12192-016-0743-z
  36. Evgen’ev M.B. // Cell Stress Chaperones. 2021. V. 26. P. 617–627. https://doi.org/10.1007/s12192-021-01219-z
  37. Komarova E.Y., Marchenko L.V., Zhakhov A.V., Nikotina A.D., Aksenov N.D., Suezov R.V., Ischenko A.M., Margulis B.A., Guzhova I.V. // Int. J. Mol. Sci. 2019. V. 21. P. 59–77. https://doi.org/10.3390/ijms21010059
  38. Shevtsov M.A., Pozdnyakov A.V., Mikhrina A.L., Yakovleva L.Y., Nikolaev B.P., Dobrodumov A.V., Meshalkina D.A., Ischenko A.M., Pitkin E., Guzhova I.V., Margulis B.A. // Int. J. Cancer. 2014. V. 135. P. 2118–2128. https://doi.org/10.1002/ijc.28858
  39. Lobinger D., Gempt J., Sievert W., Barz M., Schmitt S., Nguyen H.T., Stangl S., Werner C., Wang F., Wu Z., Fan H., Zanth H., Shevtsov M., Pilz M., Riederer I., Schwab M., Schlegel J., Multhoff G. // Front. Mol. Biosci. 2021. V. 8. P. 669366. https://doi.org/10.3389/fmolb.2021.669366
  40. Krause S.W., Gastpar R., Andreesen R., Gross C., Ullrich H., Thonigs G., Pfister K., Multhoff G. // Clin. Cancer Res. 2004. V. 10. P. 3699–3707. https://doi.org/10.1158/1078-0432.CCR-03-0683
  41. Kaczmarek M., Lagiedo M., Masztalerz A., Kozlowska M., Nowicka A., Brajer B., Batura-Gabryel H., Sikora J. // Immunobiology. 2018. V. 223. P. 200–209. https://doi.org/10.1016/j.imbio.2017.10.025
  42. Tukaj S., Sitko K. // Biomolecules. 2022. V. 12. P. 1153. https://doi.org/10.3390/biom12081153
  43. Wachstein J., Tischer S., Figueiredo C., Limbourg A., Falk C., Immenschuh S., Blasczyk R., Eiz-Vesper B. // PLoS One. 2012. V. 7. P. e51747. https://doi.org/10.1371/journal.pone.0051747
  44. Botzler C., Li G., Issels R.D., Multhoff G. // Cell Stress Chaperones. 1998. V. 3. P. 6–11. https://doi.org/10.1379/1466-1268(1998)003<0006: doeleo>2.3.co;2
  45. Affatigato L., Licciardi M., Bonamore A., Martorana A., Incocciati A., Boffi A., Militello V. // Molecules. 2023. V. 28. P. 1163. https://doi.org/10.3390/molecules28031163
  46. Shevtsov M., Huile G., Multhoff G. // Philos. Trans. R Soc. Lond. B Biol. Sci. 2018. V. 373. P. 20160526. https://doi.org/10.1098/rstb.2016.0526
  47. Shevtsov M.A., Nikolaev B.P., Ryzhov V.A., Yakovleva L.Y., Marchenko Y.Y., Parr M.A., Rolich V.I., Mikhrina A.L., Dobrodumov A.V., Pitkin E., Multhoff G. // Nanoscale. 2015. V. 7. P. 20652–20664. https://doi.org/10.1039/c5nr06521f
  48. Shaterabadi Z., Nabiyouni G., Soleymani M. // Prog. Biophys. Mol. Biol. 2018. V. 133. P. 9–19. https://doi.org/10.1016/j.pbiomolbio.2017.10.001
  49. Johannsen M., Thiesen B., Wust P., Jordan A. // Int. J. Hyperthermia. 2010. V. 26. P. 790–795. https://doi.org/10.3109/02656731003745740
  50. Maier-Hauff K., Ulrich F., Nestler D., Niehoff H., Wust P., Thiesen B., Orawa H., Budach V., Jordan A. // J. Neurooncol. 2011. V. 103. P. 317–324. https://doi.org/10.1007/s11060-010-0389-0
  51. Ruan S., Yuan M., Zhang L., Hu G., Chen J., Cun X., Zhang Q., Yang Y., He Q., Gao H. // Biomaterials. 2015. V. 37. P. 425–435. https://doi.org/10.1016/j.biomaterials.2014.10.007
  52. Ruan S., He Q., Gao H.// Nanoscale. 2015. V. 7. P. 9487–9496. https://doi.org/10.1039/c5nr01408e
  53. Gehrmann M.K., Kimm M.A., Stangl S., Schmid T.E., Noël P.B., Rummeny E.J., Multhoff G. // Int. J. Nanomedicine. 2015. V. 10. P. 5687–5700. https://doi.org/10.2147/IJN.S87174
  54. Zheng Y., Hunting D.J., Ayotte P., Sanche L. // Radiat. Res. 2008. V. 169. P. 19–27. https://doi.org/10.1667/RR1080.1
  55. Schuemann J., Berbeco R.I., Chithrani D.B., Cho S.H., Kumar R.R., McMahon S.J., Sridhar S., Krishnan S. // Int. J. Radiat. Oncol. Biol. Phys. 2016. V. 94. P. 189– 205. https://doi.org/10.1016/j.ijrobp.2015.09.032
  56. Ali M.R., Ali H.R., Rankin C.R., El-Sayed M.A. // Biomaterials. 2016. V. 102. P. 1–8. https://doi.org/10.1016/j.biomaterials.2016.06.017
  57. Gehrmann M., Stangl S., Foulds G.A., Oellinger R., Breuninger S., Rad R., Pockley A.G., Multhoff G. // PLoS One. 2014. V. 9. P. 105344. https://doi.org/10.1371/journal.pone.0105344
  58. Poccia F., Piselli P., Di Cesare S., Bach S., Colizzi V., Mattei M., Bolognesi A., Stirpe F. // Br. J. Cancer. 1992. V. 66. P. 427–432. https://doi.org/10.1038/bjc.1992.291
  59. Dezfouli A.B., Stangl S., Foulds G.A., Lennartz P., Pilkington G.J., Pockley A.G., Multhoff G. // Methods Mol. Biol. 2023. V. 2693. P. 307–324. https://doi.org/10.1007/978-1-0716-3342-7_23
  60. Madamsetty V.S., Mukherjee A., Mukherjee S. // Front. Pharmacol. 2019. V. 10. P. 1264. https://doi.org/10.3389/fphar.2019.01264
  61. Slingerland M., Guchelaar H.J., Gelderblom H. // Drug Discov. Today. 2012. V. 17. P. 160–166. https://doi.org/10.1016/j.drudis.2011.09.015f
  62. Lu R.M., Chen M.S., Chang D.K., Chiu C.Y., Lin W.C., Yan S.L., Wang Y.P., Kuo Y.S., Yeh C.Y., Lo A., Wu H.C. // PLoS One. 2013. V. 8. P. e66128. https://doi.org/10.1371/journal.pone.0066128
  63. Wilhelm S., Tavares A.J., Dai Q., Ohta S., Audet J., Dvorak H.F., Chan C.W. // Nat. Rev. Mater. 2016. V. 1. P. e16014. https://doi.org/10.1038/natrevmats.2016.14
  64. Alswieleh A.M. // J. Chem. 2020. V. 2020. P. e9176257. https://doi.org/10.1155/2020/9176257
  65. Hassanpour A., Irandoust M., Soleimani E., Zhaleh H. // Mat. Sci. Eng. C Mater. Biol. Appl. 2019. V. 103. P. 109771. https://doi.org/10.1016/j.msec.2019.109771
  66. Lu S., Neoh K.G., Huang C., Shi Z., Kang E.T. // J. Colloid Interface Sci. 2013. V. 412. P. 46–55. https://doi.org/10.1016/j.jcis.2013.09.011
  67. Shevtsov M., Zhou Y., Khachatryan W., Multhoff G., Gao H. // Curr. Drug Metab. 2018. V. 19. P. 768–780. https://doi.org/10.2174/1389200219666180611080736
  68. Genc S., Taghizadehghalehjoughi A., Yeni Y., Jafarizad A., Hacimuftuoglu A., Nikitovic D., Docea A.O., Mezhuev Y., Tsatsakis A. // Pharmaceutics. 2023. V. 15. P. 245. https://doi.org/10.3390/pharmaceutics15010245
  69. Sparreboom A., Scripture C.D., Trieu V., Williams P.J., De T., Yang A., Beals B., Figg W.D., Hawkins M., Desai N. // Clin. Cancer Res. 2005. V. 11. P. 4136– 4143. https://doi.org/10.1158/1078-0432.CCR-04-2291
  70. Svenson S. // Chem. Soc. Rev. 2015. V. 44. P. 4131– 4144. https://doi.org/10.1039/c5cs00288e
  71. Caminade A.M. // J. Pers. Med. 2022. V. 12. P. 1334. https://doi.org/10.3390/jpm12081334
  72. Stangl S., Gehrmann M., Dressel R., Alves F., Dullin C., Themelis G., Ntziachristos V., Staeblein E., Walch A., Winkelmann I., Multhoff G. // J. Cell Mol. Med. 2011. V. 15. P. 874–887. https://doi.org/10.1111/j.1582-4934.2010.01067.x
  73. Multhoff G., Pfister K., Gehrmann M., Hantschel M., Gross C., Hafner M., Hiddemann W.A. // Cell Stress Chaperones. 2001. V. 6. P. 337–344. https://doi.org/10.1379/1466-1268(2001)006<0337: AMHPSN>2.0.CO;2
  74. Taglia L., Matusiak D., Benya R.V. // Clin. Exp. Metastasis. 2008. V. 25. P. 451–463. https://doi.org/10.1007/s10585-008-9151-9
  75. Gobbo J., Marcion G., Cordonnier M., Dias A.M.M., Pernet N., Hammann A., Richaud S., Mjahed H., Isambert N., Clausse V., Rébé C., Bertaut A., Goussot V., Lirussi F., Ghiringhelli F., de Thonel A., Fumoleau P., Seigneuric R., Garrido C. // J. Natl. Cancer Inst. 2015. V. 108. Р. djv330. https://doi.org/10.1093/jnci/djv330
  76. Schmitt E., Maingret L., Puig P.E., Rerole A.L., Ghiringhelli F., Hammann A., Solary E., Kroemer G., Garrido C. // Cancer Res. 2006. V. 66. P. 4191– 4197. https://doi.org/10.1158/0008-5472.CAN-05-3778
  77. McKeon A.M., Egan A., Chandanshive J., McMahon H., Griffith D.M. // Molecules. 2016. V. 21. P. 949. https://doi.org/10.3390/molecules21070949
  78. Adam C., Baeurle A., Brodsky J.L., Wipf P., Schrama D., Becker J.C., Houben R. // PLoS One. 2014. V. 9. P. e92041. https://doi.org/10.1371/journal.pone.0092041
  79. Prince T., Ackerman A., Cavanaugh A., Schreiter B., Juengst B., Andolino C., Danella J., Chernin M., Williams H. // Oncotarget. 2018. V. 9. P. 32702–32717. https://doi.org/10.18632/oncotarget.26021
  80. Li X., Srinivasan S.R., Connarn J., Ahmad A., Young Z.T., Kabza A.M., Zuiderweg E.R.P., Sun D., Gestwicki J.E. // ACS Med. Chem. Lett. 2013. V. 4. P. 1042–1047. https://doi.org/10.1021/ml400204n
  81. Wadhwa R., Sugihara T., Yoshida A., Nomura H., Reddel R.R., Simpson R., Maruta H., Kaul S.C. // Cancer Res. 2000. V. 60. P. 6818–6821.
  82. Koya K., Li Y., Wang H., Ukai T., Tatsuda N., Kawakami M., Shishido T., Chen L.B. // Cancer Res. 1996. V. 56. P. 538–543.
  83. Modica-Napolitano J.S., Koya K., Weisberg E., Brunelli B.T., Li Y., Chen L.B. // Cancer Res. 1996. V. 56. P. 544–550.
  84. Schett G., Xu Q., Amberger A., Van der Zee R., Recheis H., Willeit J., Wick G. // J. Clin. Invest. 1995. V. 96. P. 2569–2577. https://doi.org/10.1172/JCI118320
  85. Leng X., Wang X., Pang W., Zhan R., Zhang Z., Wang L., Gao X., Qian L. // Cell Stress Chaperones. 2013. V. 18. P. 483–493. https://doi.org/10.1007/s12192-013-0404-4

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Mechanism of protein structure refolding by HSP70. HSP40 (DnaJ), containing the J-domain, transports misfolded protein (substrate) to HSP70 (1); HSP40 triggers ATP hydrolysis and conformational changes in the HSP70 structure, stabilizing the bonds between the substrate and HSP70 (2); the nucleotide exchange factor GrpE (HSP10) is involved in nucleotide exchange in the HSP70 molecule (3); the released substrate either comes to its native conformation (resolved conformation) (4), or its structure is unresolved (unresolved), and, again binding to HSP70, the protein is sent for refolding [15].

Download (130KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies