Acesso aberto Acesso aberto  Acesso é fechado Acesso está concedido  Acesso é fechado Somente assinantes

Volume 80, Nº 12 (2025)

Capa

Edição completa

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

REVIEWS

METHODS OF NON-LABORATORY ANALYSIS USING A SMARTPHONE

Beklemishev M.

Resumo

This review covers methods of analysis using portable devices in combination with smartphones. The review spans works from 2015–2024, with an emphasis on recent years. References to reviews, mainly from the last five years, are provided. Devices used in combination with smartphones are discussed (from smartphone holders to portable visible, UV-Vis, and IR spectrometers, microscopes, and cytometers), amperometric and potentiometric devices, and portable microfluidic analyzers. Options for using smartphones in portable devices for immunochemical analysis, for polymerase chain reaction, and in other variants for determining nucleotide sequences, in microfluidic devices, and in separation methods are considered. Paper-based test systems, photonic crystals, nanozymes, and other special techniques (optoelectrowetting, electrochemiluminescence, hyperspectral imaging, evanescent wave spectroscopy) are reviewed. The main sample types and analytes are listed.
Journal of Analytical Chemistry. 2025;80(12):1243-1286
pages 1243-1286 views

METHODS FOR THE DETERMINATION OF SAXITOXIN AND RICIN. LITERATURE REVIEW

Kovalenko I., Braun A., Grigoriev A., Rybalchenko I., Fateenkov V.

Resumo

The review examines publications devoted to the development and improvement of methods for determining ricin and saxitoxin using various combinations and modifications of biochemical, immunospecific methods, and liquid chromatography-mass spectrometry. Emphasis is placed on the importance of selecting an analysis strategy, optimizing sample preparation procedures, and operating modes of analytical instruments. Literature data on the selection of characteristic markers and methods for their determination are summarized.
Journal of Analytical Chemistry. 2025;80(12):1287-1310
pages 1287-1310 views

ORIGINAL ARTICLES

DETERMINATION OF FORMALDEHYDE, GLYOXAL, GLUTARALDEHYDE, AND o-PHTHALALDEHYDE IN THE PRESENCE OF EACH OTHER IN DISINFECTANTS USING 2,4-DINTROPHENYLHYDRAZINE

Salimova A., Andreev S., Martynov L., Ischenco A., Solovov R.

Resumo

Dialdehydes are predominantly used as disinfectants because these compounds exhibit a broad spectrum of antimicrobial activity. Among monoaldehydes, formaldehyde is used to a limited extent due to its higher toxicity. This work describes conditions for the simultaneous derivatization of formaldehyde, glyoxal, glutaraldehyde, and o-phthalaldehyde with 2,4-dinitrophenylhydrazine. The reaction is carried out in an acetonitrile–methanol mixture at 50°C in an ultrasonic bath using trifluoroacetic acid as a catalyst. The best separation of mixture components was achieved on a C18 column in gradient elution mode with acetonitrile and acetate buffer solution (pH 5.4) at a variable flow rate. The linearity range for formaldehyde was 2.51–20.0 mg/L, for glutaraldehyde 4.92–21.9 mg/L, for o-phthalaldehyde 1.98–6.94 mg/L, and for glyoxal 2.00–10.0 mg/L. The limits of detection for formaldehyde, glyoxal, glutaraldehyde, and o-phthalaldehyde were 0.453, 0.177, 0.967, and 0.760 mg/L, respectively. The developed method was successfully applied for the simultaneous determination of aldehydes in disinfectants.
Journal of Analytical Chemistry. 2025;80(12):1311-1318
pages 1311-1318 views

DETERMINATION OF DOXORUBICIN BASED ON QUENCHING OF LUMINESCENCE OF ALLOYED QUANTUM DOTS

Koganova D., Tsyupka D., Drozd D., Mescheriakova S., Pidenko P., Kornilov D., Goryacheva O., Goryacheva I.

Resumo

A sensitive, simple method for determining doxorubicin (Dox) in biological fluids, which does not require complex sample preparation, has been developed based on the quenching of luminescence of thioglycolic acid-stabilized CdZnSeS/ZnS quantum dots (QDs). Luminescence quenching was studied in model solutions and human blood plasma to establish optimal determination parameters. Optimal conditions for Dox detection were selected: QDs with optical density Aλ=360 = 0.05 and 25-fold plasma dilution. The developed method was applied to analyze a human blood sample. The limit of detection for Dox was 0.02 µg/mL, the limit of quantification 0.18 µg/mL, the linear range 0.27–4.07 µg/mL (R2 > 0.96); the method showed good reproducibility (sr from 1.08 to 1.19%). The method's accuracy was confirmed by HPLC with UV detection.
Journal of Analytical Chemistry. 2025;80(12):1319-1330
pages 1319-1330 views

IMPROVEMENT OF METROLOGICAL CHARACTERISTICS OF ARC ATOMIC EMISSION DETERMINATION OF REFRACTORY IMPURITIES IN REFRACTORY MATRICES IN THE PRESENCE OF FLUORINE-CONTAINING ADDITIVES

Zolotareva N., Grazhulene S.

Resumo

This work is devoted to an important area of arc atomic emission analysis, namely, the study of the influence of chemically active additives on the metrological characteristics of determining refractory elements in refractory matrices. A number of scientific results published by the authors of the article are critically reviewed in comparison with literature data on the mechanism of action of these additives and their practical use. Over 25 years of experience and the results of such studies, the generalization of the identified patterns and advantages of fluorinating agents AlF3, AgF, BaF2, SrF2, and ZnF2 allow concluding their universality in the analysis of refractory matrices and the feasibility of practical use in terms of improving the selectivity, sensitivity, and accuracy of arc atomic emission analysis determinations. It has been established that zinc fluoride is the most effective fluorinating agent for analyzing all studied matrices. Its use allowed reducing the limits of detection for refractory elements by 2–3 orders of magnitude compared to determinations without additives, as well as improving the convergence and accuracy of the results.
Journal of Analytical Chemistry. 2025;80(12):1321-1339
pages 1321-1339 views

DIRECT ELEMENTAL ANALYSIS OF WINES BY MICROWAVE INDUCED PLASMA ATOMIC EMISSION SPECTROMETRY AND INDUCTIVELY COUPLED PLASMA ATOMIC EMISSION SPECTROMETRY

Trunova V., Polyakova E., Komin O., Pelipasov O., Slastya E., Anikina N., Trefilov V.

Resumo

Methods for the direct analysis of table wines by microwave induced plasma atomic emission spectrometry (MIP-AES) and inductively coupled plasma atomic emission spectrometry (ICP-AES) using matrix matching are presented. K, Na, Ca, Mg, B, Si, Al, Fe, Cu, Mn, Ba, Sr, Li, Zn are quantitatively determined from one dilution with an error of no more than 10% (n = 2). The range of constancy of analytical signals was determined when varying the concentrations of potassium, alcohol, and sucrose in MIP-AES analysis. It was shown that there is no decrease in the background signal when replacing nitrogen with air in the auxiliary flow, and that analytical characteristics improve when using yttrium as an internal standard in MIP-AES. The results were confirmed by capillary zone electrophoresis, the spiking method, and comparison of ICP-AES and MIP-AES analysis results.
Journal of Analytical Chemistry. 2025;80(12):1340-1350
pages 1340-1350 views

IMMUNOCHROMATOGRAPHIC TEST SYSTEM FOR THE DETERMINATION OF BISPHENOL A WITH MAGNETIC CONCENTRATION

Taranova N., Bulanaya A., Zherdev A., Dzantiev B.

Resumo

Bisphenol A (BPA) is widely used as a hardener in the production of plastics. However, its release and circulation in ecosystems lead to contamination of drinking water and food products, accompanied by a negative impact on human health, primarily on the endocrine system. In this regard, there is a need for simple and efficient BPA monitoring tools. The paper presents a combination of two approaches for this purpose – the use of magnetic particles (MP) as an antibody carrier and immunochromatographic test strips for recording labeled immune complexes. The visual detection limit of BPA was 10 μg/ml, the instrumental limit was 55 ng/ml, the working range of quantitative determination was 0.1–10 μg/ml. The efficiency of using the MP conjugate for analyte concentration was demonstrated, allowing the detection limit to be reduced by ~200 times. The developed ICA is suitable for qualitative control of the presence and quantitative determination of BPA content in drinking and natural water samples (the detection rate is in the range of 94–106%).
Journal of Analytical Chemistry. 2025;80(12):1352-1362
pages 1352-1362 views

DETERMINATION OF GLUTEN BY UHPLC-MS/MS BASED ON SUMMATION OF PEPTIDE MARKERS TO ACCOUNT FOR GENETIC VARIABILITY

Plotnikov A., Rodin I.

Resumo

A method for determining gluten in commercial food products using ultra-high-performance liquid chromatography–tandem mass spectrometry has been developed. The key feature of the method is the minimization of the influence of variations in the content and composition of gluten proteins on the quantitative analysis results, achieved by summing the responses of several marker peptides. The results showed that the total limit of detection of the developed method is 10 mg/kg gluten proteins in food products. It was established that increasing the number of marker peptides used enhances the reliability of the method when analyzing food products with different compositions of gluten proteins. This approach allows improving the accuracy of gluten content control, which is important for products labeled as "gluten-free."
Journal of Analytical Chemistry. 2025;80(12):1363-1368
pages 1363-1368 views

IDENTIFICATION AND DETERMINATION OF CARBAZOLES IN NATURAL AND SYNTHETIC OILS BY GAS CHROMATOGRAPHY WITH THERMIONIC DETECTION

Pirogov A., Lagutin A., Karpeev D., Shpigun O., Zolotov Y., Grigorenko T., Savostin G., Kalmykov A.

Resumo

A modified sample preparation method for oils for the determination of carbazoles is proposed, involving deasphalting of oil by settling a sample of oil in a 40-fold excess of n-hexane for one day and using non-modified silica gel instead of argentated. In this case, carbazoles are eluted in one fraction. Conditions for the identification and determination of carbazole, 9-methyl-, and 9-ethylcarbazole by gas chromatography with thermionic detection were selected, and the analytical characteristics of the method were established. The choice of 3-nitro-9-methylcarbazole as an internal standard for carbazole determination was justified, and its synthesis was performed. The presence and quantity of carbazoles in oils from different fields and in a synthetic oil sample were assessed. A comparison of carbazole determination results in natural oils using the external standard method, internal standard, and additions was conducted. It was shown that all methods yield the same results within the error limits. The carbazole content in natural oils for the studied samples was found to be in the range of 0.14–2.61 mg/kg. 9-Ethylcarbazole was detected in four oil samples.
Journal of Analytical Chemistry. 2025;80(12):1369-1378
pages 1369-1378 views

EXPRESS ANALYSIS OF MOIST SOILS CONTAMINATED WITH PETROLEUM HYDROCARBONS USING SODIUM SULFATE AS A CHEMICAL DESICCANT

Vladimirov S., Adaikina A., Volikov A., Nikolaeva A., Perminova I.

Resumo

Sample preparation is a relevant problem in the quantitative analysis of natural moist soil samples for volatile petroleum hydrocarbon content. Drying the soil to an air-dry state leads to the loss of the most volatile hydrocarbons, while analyzing moist natural soil without preparation does not allow complete extraction of petroleum products, leading to underestimated results. Existing methods that enable complete extraction of petroleum hydrocarbons are time-consuming. The results of analysis are also influenced by the mass of the moist soil sample used for a single analysis and the number of repeated sample studies. This work investigates the possibility of using anhydrous sodium sulfate as a drying agent for analyzing moist natural soil contaminated with diesel fuel. To determine the completeness of petroleum product extraction from moist soils, sample preparation methods with drying to air-dry state, drying with sodium sulfate, and analysis without preparation were compared. The possibility of increasing the accuracy and precision of analysis was evaluated when extracting diesel fuel from aliquots of 2, 10, and 15 g of model contaminated sand and moist natural soil. Each measurement was performed in 2, 5, and 7 replicates. It was established that chemical drying of moist soil with anhydrous sodium sulfate leads to the most complete extraction of petroleum products from moist soil, and using 15 g aliquots and performing seven replicate measurements increases the accuracy of the analysis.
Journal of Analytical Chemistry. 2025;80(12):1379-1386
pages 1379-1386 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».