METHODS OF NON-LABORATORY ANALYSIS USING A SMARTPHONE
- Authors: Beklemishev M.K1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: Vol 80, No 12 (2025)
- Pages: 1243-1286
- Section: REVIEWS
- Submitted: 03.12.2025
- URL: https://journals.rcsi.science/0044-4502/article/view/355763
- DOI: https://doi.org/10.7868/S3034512X25120017
- ID: 355763
Cite item
Abstract
About the authors
M. K Beklemishev
Lomonosov Moscow State University
Email: beklem@inbox.ru
Department of Chemistry Moscow, Russia
References
- Соловьева Н. Глобальный рынок смартфонов: итоги 2024 года. https://dzen.ru/a/Z26a-Zw91QFdwR6s (дата обращения 11.04.2025).
- Majumder S., Deen M.J. Smartphone sensors for health monitoring and diagnosis // Sensors. 2019. V. 19. № 9. Article 2164. https://doi.org/10.3390/s19092164
- Silva G.M.E., Campos D.F., Brasil J.A.T., Tremblay M., Mendiondo E.M., Ghiglieno F. Advances in technological research for online and in situ water quality monitoring – A review // Sustainability. 2022. V. 14. № 9. Article 5059. https://doi.org/10.3390/su14095059
- Yuan X., Glidle A., Yang Z., Wang B. Rapid enzymatic assays for fecal contamination in aquatic environment: Challenges, advances and prospects // Trends Anal. Chem. 2024. V. 176. Article 117768. https://doi.org/10.1016/j.trac.2024.117768
- РФ-анализатор Skyray Explorer 5000 для металлов и сплавов. https://lucon.pro/es/analisys-china/skyray-explorer-5000-2 (дата обращения 11.04.2025).
- Chandra Kishore S., Samikannu K., Atchudan R., Perumal S., Edison T.N.J.I., Alagan M., Sundramoorthy A.K., Lee Y.R. Smartphone-operated wireless chemical sensors: A review // Chemosensors. 2022. V. 10. P. 55. https://doi.org/10.3390/chemosensors10020055
- Seo S.E., Tabei F., Park S.J., Askarian B., Kim K.H., Moallem G., Chong J.W., Kwon O.S. Smartphone with optical, physical, and electrochemical nanobiosensors // J. Ind. Eng. Chem. 2019. V. 77. P. 1. https://doi.org/10.1016/j.jiec.2019.04.037
- He X., Ji W., Xing S., Feng Z., Li H., Lu S., Du K., Li X. Emerging trends in sensors based on molecular imprinting technology: Harnessing smartphones for portable detection and recognition // Talanta. 2024. V. 268. № 1. Article 125283. https://doi.org/0.1016/j.talanta.2023.125283
- Le L.T.P., Nguyen A.H.Q., Phan L.M.T, Ngo H.T.T, Wang X., Cunningham B., Valera E., Bashir R., Taylor-Robinson A.W., Do C.D. Current smartphone-assisted point-of-care cancer detection: Towards supporting personalized cancer monitoring // Trends Anal. Chem. 2024. V. 174. Article 117681. https://doi.org/10.1016/j.trac.2024.117681
- Banik S., Melanthota S.K., Arbaaz, Vaz J.M., Kadambalithaya V.M., Hussain I., Dutta S., Mazumder N. Recent trends in smartphone-based detection for biomedical applications: A review // Anal. Bioanal. Chem. 2021. V. 413. № 9. P. 2389. https://doi.org/10.1007/s00216-021-03184-z
- Raten, G., Dario P., Cavallo F. Smartphone-based food diagnostic technologies: A review // Sensors. 2017. V. 17. Article 1453. https://doi.org/10.3390/s17061453
- Shrivastava A. A Critical review on smartphone based determinations of drugs // Curr. Pharm. Anal. 2023. V. 19. № 3. P. 177. https://doi.org/10.2174/1573412919666230119145548
- Xue J., Mao K., Cao H., Feng R., Chen Z., Du W., Zhang H. Portable sensors equipped with smartphones for organophosphorus pesticides detection // Food Chem. 2024. V. 434. Article 137456. https://doi.org/10.1016/j.foodchem.2023.137456
- Rezazadeh M., Seidi S., Lid M., Pedersen-Bjergaard S., Yamini Y. The modern role of smartphones in analytical chemistry // Trends Anal. Chem. 2019. V. 118. P. 548. https://doi.org/10.1016/j.trac.2019.06.019
- Upadhyay S., Kumar A., Srivastava M., Srivastava A., Dwivedi A., Singh R.K., Srivastava S.K. Recent advancements of smartphone-based sensing technology for diagnosis, food safety analysis, and environmental monitoring // Talanta. 2024. V. 275. Article 126080. https://doi.org/10.1016/j.talanta.2024.126080
- Shogah Z.A., Bolshakov D.S., Amelin V.G. Using smartphones in chemical analysis // J. Anal. Chem. 2023. V. 78. P. 426. https://doi.org/10.1134/S1061934823030139
- Li L., Yang C., Li Y., Nie Y., Tian X. Sulfur quantum dot-based portable paper sensors for fluorometric and colorimetric dual-channel detection of cobalt // J. Mater. Sci. 2021. V. 56. P. 4782. https://doi.org/10.1007/s10853-020-05544-z
- Pohanka M., Zakova J. Urine test strip quantitative assay with a smartphone camera // Int. J. Anal. Chem. 2024. № 1. Article 6004970. https://doi.org/10.1155/2024/6004970
- Mirhosseini S., Nasiri A.F., Khatami F., Mirzaei A., Aghamir S.M.K. A digital image colorimetry system based on smart devices for immediate and simultaneous determination of enzyme-linked immunosorbent assays // Sci. Rep. 2024. V. 14. Article 2587. https://doi.org/10.1038/s41598-024-52931-6
- Dutta S. Point of care sensing and biosensing using ambient light sensor of smartphone: Critical review // Trends Anal. Chem. 2019. V. 110. P. 393. https://doi.org/10.1016/j.trac.2018.11.014
- Di Nonno S., Ulber R. Smartphone-based optical analysis systems // Analyst. 2021. V. 146. № 9. P. 2749. https://doi.org/10.1039/d1an00025j
- GoSpectro: Turn your smartphone into a visible spectrometer https://www.goyalab.com/product/handheld-spectrometer-gospectro/ (дата обращения 11.04.25).
- Stephan T. Portable spectroscopy using a gospectro device with a smartphone // J. Gemmol. 2021. V. 37. № 7. P. 683. https://doi.org/10.15506/JoG.2021.37.7.683
- Woo Y., Ju Y.-G. Fabrication of a high-resolution smartphone spectrometer for education using a 3D printer // Phys. Educ. 2019. V. 54. Article 15010. https://doi.org/10.1088/1361-6552/aaea0e
- Bogucki R., Greggila M., Mallory P., Feng J., Siman K., Khakipoor B., King H., Smith A.W. A 3D-printable dual beam spectrophotometer with multiplatform smartphone adaptor // J. Chem. Educ. 2019. V. 96. P. 1527. https://doi.org/10.1021/acs.jchemed.8b00870
- Wilkes T.C., McGonigle A.J., Willmott J.R., Pering T.D., Cook J.M. Low-cost 3D printed 1 nm resolution smartphone sensor-based spectrometer: instrument design and application in ultraviolet spectroscopy // Opt. Lett. 2017. V. 42. P. 4323. https://doi.org/10.1364/OL.42.004323
- Edwards P., Zhang C., Zhang B., Hong X., Nagarajan V.K., Yu B., Liu Z. Smartphone based optical spectrometer for diffusive reflectance spectroscopic measurement of hemoglobin // Sci. Rep. 2017. V. 7. Article 12224. https://doi.org/10.1038/s41598-017-12482-5
- Spibey C.A., Jackson P., Herick K. A unique charge-coupled device/xenon arc lamp based imaging system for the accurate detection and quantitation of multicolourfluorescence // Electrophoresis. 2001. V. 22. P. 829. https://doi.org/10.1002/1522-2683()22:5<829::AID-ELPS829>3.0.CO;2-U
- Velpula R.T., Jain B., Philip M.R., Nguyen H.D., Wang R., Nguyen H.P.T. Epitaxial growth and characterization of AlInN-based core–shell nanowire light emitting diodes operating in the ultraviolet spectrum // Sci. Rep. 2020. V. 10. Article 2547. https://doi.org/10.1038/s41598-020-59442-0
- Fang X.-X., Li H.-Y., Fang P., Pan J.-Z., Fang Q. A handheld laser-induced fluorescence detector for multiple applications // Talanta. 2016. V. 150. P. 135. https://doi.org/10.1016/j.talanta.2015.12.018
- Darwish G.H., Asselin J., Tran M.V., Gupta R., Kim H., Boudreau D., Algar W.R. Fully self-assembled silica nanoparticle-semiconductor quantum dot supra-nanoparticles and immunoconjugates for enhanced cellular imaging by microscopy and smartphone camera //ACS Appl. Mater. Interfaces. 2020. V. 12. № 30. P. 33530. https://doi.org/10.1021/acsami.0c09553
- Yang C., Wang Z., Xiao K., Ushakov N., Kumar S., Li X., Min R. Portable optical fiber biosensors integrated with smartphone: technologies, applications, and challenges [Invited] // Biomed. Opt. Express. 2024. V. 15. № 3. P. 1630. https://doi.org/10.1364/BOE.517534
- Rizzi A., Gatta C., Marini D. Color correction between gray world and white patch / Human Vision and Electronic Imaging VII. SPIE, 2002. V. 4662. P. 367. https://doi.org/10.1117/12.469534
- Roda A., Michelini E., Cevenini L., Calabria D., Calabretta M.M., Simoni P. Integrating biochemiluminescence detection on smartphones: Mobile chemistry platform for point-of-need analysis // Anal. Chem. 2014. V. 86. № 15. P. 7299. http://dx.doi.org/10.1021/ac502137s
- Chang K.-H., Chen R.L.C., Hsieh B.-C., Chen P.-C., Hsiao H.-Y., Nieh C.-H., Cheng T.-J. A hand-held electronic tongue based on fluorometry for taste assessment of tea // Biosens. Bioelectron. 2010. V. 26. P. 1507. http://dx.doi.org/10.1016/j.bios.2010.07.100
- Ghosh K.K., Burns L.D., Cocker E.D., Nimmerjahn A., Ziv Y., Gamal A.E., Schnitzer M.J. Miniaturized integration of a fluorescence microscope // Nat. Methods. 2011. V. 8. P. 871. http://dx.doi.org/10.1038/nmeth.1694
- Wei Q., Qi H., Luo W., Tseng D., Ki S.J., Wan Z., Göröcs Z., Bentolila L.A., Wu T.T., Sun R., Ozcan A. Fluorescent imaging of single nanoparticles and viruses on a smart phone // ACS Nano. 2013. V. 7. № 10. P. 9147. http://dx.doi.org/10.1021/nn4037706
- Shan Y., Wang B., Huang H., Jian D., Wu X., Xue L., Wang S., Liu F. On-site quantitative Hg2+ measurements based on selective and sensitive fluorescence biosensor and miniaturized smartphone fluorescence microscope // Biosens. Bioelectron. 2019. V. 132. P. 238. http://dx.doi.org/10.1016/j.bios.2019.02.062
- Lee W.I., Park Y., Park J., Shrivastava S., Son Y.M., Choi H.J., Lee J., Jeon B., Lee H., Lee N.E. A smartphone fluorescence imaging-based mobile biosensing system integrated with a passive fluidic control cartridge for minimal user intervention and high accuracy // Lab on a Chip. 2019. V. 19. № 8. P. 1502. http://dx.doi.org/10.1039/c8lc01344f
- Khemtonglang K., Liu W., Lee H., Wang W., Li S., Li Z.Y., Shepherd S., Yang Y., Diel D.G., Fang Y., Cunningham B.T. Portable, smartphone-linked, and miniaturized photonic resonator absorption microscope (PRAM Mini) for point-of-care diagnostics // Biomed. Opt. Express. 2024. V. 15. № 10. P. 5691. http://dx.doi.org/10.1364/BOE.531388
- Ludwig S.K.J., Zhu H., Phillips S., Shiledar A., Feng S., Tseng D., van Ginkel L.A., Nielen M.W.F., Ozcan A. Cellphone-based detection platform for rbST biomarker analysis in milk extracts using a microsphere fluorescence immunoassay // Anal. Bioanal. Chem. 2014. V. 406. P. 6857. https://doi.org/10.1007/s00216-014-7984-4
- Amelin V.G., Emelyanov O.E., Tretyakov A.V. Manufacturer identification and active ingredient determination of medicinal products by smartphone-based near-IR colorimetry // J. Anal. Chem. 2024. V. 79. P. 601. https://doi.org/10.1134/S1061934824050034
- Li L., Wang Y., Jin S., Li M., Chen Q., Ning J., Zhang Z. Evaluation of black tea by using smartphone imaging coupled with micro-near-infrared spectrometer // Spectrochim. Acta A. 2021. V. 246. Article 118991. https://doi.org/10.1016/j.saa.2020.118991
- QE Pro Series Spectrometers. https://www.oceanoptics.com/spectrometer/qe-pro/ (дата обращения 11.04.2025).
- Zeng F., Mou T., Zhang C., Huang X., Wang B., Ma X., Guo J. Paper-based SERS analysis with smartphones as Raman spectral analyzers // Analyst. 2019. V. 144. P. 137. https://doi.org/10.1039/C8AN01901K
- Yun P., Jinorose M., Devahastin S. Rapid smartphone-based assays for pesticides inspection in foods: current status, limitations, and future directions // Crit. Rev. Food Sci. Nutr. 2024. V. 64(18). P. 6251. https://doi.org/10.1080/10408398.2023.2166897
- Hu P., Zhang X., Zhang W., Song L., Wei H., Xiu H., Zhang M., Shang M., Wang C. A SERS-based point-of-care testing approach for efficient determination of diquat and paraquat residues using a flexible silver flower-coated melamine sponge // Food Chem. 2024. V. 454. Article 139831. https://doi.org/10.1016/j.foodchem.2024.139831
- Biswas P.C., Rani S., Hossain M.A., Islam M.R., Canning J. Recent developments in smartphone spectrometer sample analysis // IEEE Journal of Selected Topics in Quantum Electronics. 2021. V. 27. № 6. P. 1. https://doi.org/10.1109/JSTQE.2021.3075074
- Mazur F., Han Z., Tjandra A.D., Chandrawati R. Digitalization of colorimetric sensor technologies for food safety // Adv. Mater. 2024. V. 36(42). Article e2404274. https://doi.org/10.1002/adma.202404274
- Monogarova O.V., Oskolok K.V., Apyari V.V. Colorimetry in chemical analysis // J. Anal. Chem. 2018. V. 73. P. 1076. https://doi.org/10.1134/S1061934818110060
- >Apyari V.V., Gorbunova M.V., Isachenko A.I., Dmitrienko S.G., Zolotov Yu.A. Use of household color-recording devices in quantitative chemical analysis // J. Anal. Chem. V. 72. P. 1127. https://doi.org/10.1134/S106193481711003X
- Ulber R. Smartphone-based optical analysis systems // Analyst. 2021. V. 146. № 9. P. 2749. https://doi.org/10.1039/d1an00025j
- Geng Z., Miao Y., Zhang G., Liang X. Colorimetric biosensor based on smartphone: State-of-art // Sens. Actuators A. 2023. V. 349. Article 114056. https://doi.org/10.1016/j.sna.2022.114056
- Cho H.H., Heo J.H., Jung D.H., Kim S.H., Suh S.-J., Han K.H., Lee J.H. Portable Au nanoparticle-based colorimetric sensor strip for rapid on-site detection of Cd2+ ions in potable water // BioChip J. 2021. V. 15. P. 276. https://doi.org/10.1007/s13206-021-00029-w
- Gu Y., Jiao L., Cao F., Liu X., Zhou Y., Yang C., Gao Z., Zhang M., Lin P., Han, Y., Dong D. A real-time detection method of Hg2+ in drinking water via portable biosensor: Using a smartphone as a low-cost micro-spectrometer to read the colorimetric signals // Biosensors (MDPI). 2022. V. 12. Article 1017. https://doi.org/10.3390/bios12111017
- Zhang L., Huang D., Zhao P., Yue G., Yang L., Dan W. Colorimetric detection for uranyl ions in water using vinylphosphonic acid functionalized gold nanoparticles based on smartphone // Spectrochim. Acta A. 2022. V. 269. Article 120748. https://doi.org/10.1016/j.saa.2021.120748
- Shrivas K., Patel S., Sinha D., Thakur S.S., Patle T.K., Kant T., Dewangan K., Satnami M.L., Nirmalkar J., Kumar S. Colorimetric and smartphone-integrated paper device for on-site determination of arsenic(III) using sucrose modified gold nanoparticles as a nanoprobe // Mikrochim. Acta. 2020. V. 187. № 3. Article 173. https://doi.org/10.1007/s00604-020-4129-7
- Shrivas K., Sahu B., Deb M.K., Thakur S.S., Sahu S., Kurrey R., Kant T., Patle T.K., Jangde R. Colorimetric and paper-based detection of lead using PVA capped silver nanoparticles: Experimental and theoretical approach // Microchem. J. 2019. V. 150. Article 104156. https://doi.org/10.1016/j.microc.2019.104156
- Ren H., Li F., Yu S., Wu P. The detection of multiple analytes by using visual colorimetric and fluorometric multimodal chemosensor based on the azo dye // Heliyon. 2022. V. 8(8). Article e10216. https://doi.org/10.1016/j.heliyon.2022.e10216
- Doǧan V., Isık T., Kılıç V., Horzum N. A field-deployable water quality monitoring with machine learning-based smartphone colorimetry // Anal. Methods. 2022. V. 14(35). P. 3458. https://doi.org/10.1039/D2AY00785A
- Ai H., Zhang K., Zhang H. Efficient smartphone-based measurement of phosphorus in water // Water Res X. 2024. V. 22. Article 100217. https://doi.org/10.1016/j.wroa.2024.100217
- Mukherjee S., Shah M., Chaudhari K., Jana A., Sudhakar C., Srikrishnarka P., Islam M.R., Philip L., Pradeep T. Smartphone-based fluoride-specific sensor for rapid and affordable colorimetric detection and precise quantification at sub-ppm levels for field applications // ACS Omega. 2020. V. 5(39). P. 25253. https://doi.org/10.1021/acsomega.0c03465
- Vellingiri K., Choudhary V., Philip L. Fabrication of portable colorimetric sensor based on basic fuchsin for selective sensing of nitrite ions // J. Environ. Chem. Eng. 2019. V. 7. Article 103374. https://doi.org/10.1016/j.jece.2019.103374
- Srivastava S., Vaddadi S., Sadistap S. Smartphone-based System for water quality analysis // Appl. Water. Sci. 2018. V. 8. P. 130. https://doi.org/10.1007/s13201-018-0780-0
- Tobiszewski M., Vakh C. Analytical applications of smartphones for agricultural soil analysis // Anal. Bioanal. Chem. 2023. V. 415. № 18. P. 3703. https://doi.org/10.1007/s00216-023-04558-1
- Leonard J., Koydemir H.C., Koutnik V.S., Tseng D., Ozcan A., Mohanty S.K. Smartphone-enabled rapid quantification of microplastics // J. Hazard. Mater. Lett. 2022. V. 3. Article 100052. https://doi.org/10.1016/j.hazl.2022.100052
- Ramirez-Coronel A.A., Alameri A.A., Altalbawy F., Sanaan Jabbar H., Lateef Al-Awsi G.R., Iswanto A.H., Mustafa Y.F. Smartphone-facilitated mobile colorimetric probes for rapid monitoring of chemical contaminations in food. Advances and Outlook // Crit. Rev. Anal. Chem. 2023. P. 1. https://doi.org/10.1080/10408347.2022.2164173
- Rateni G., Dario P., Cavallo F. Smartphone-based food diagnostic technologies: A review // Sensors. 2017. V. 17. Article 1453. https://doi.org/10.3390/s17061453
- Yun P., Jinorose M., Devahastin S. Rapid smartphone-based assays for pesticides inspection in foods: Current status, limitations, and future directions // Crit. Rev. Food Sci. Nutr. 2024. V. 64. № 18. P. 6251. https://doi.org/10.1080/10408398.2023.2166897
- Kochetkova M., Timofeeva I., Frolova D., Bulatov A. Low-cost digital colorimetric sensor for rapid on-site determination of ascorbic acid in vegetableand fruit-based purees and juices // J. Food Comp. Anal. 2025. V. 137. Part A. Article 106920. https://doi.org/10.1016/j.jfca.2024.106920
- Amelin V.G., Emel’yanov O.E., Shogah Z.A.Ch., Tret’yakov A.V. Determination of the mass fraction of milk fat in bottled milk using a contactless colorimetric method // J. Anal. Chem. 2024. V. 79. № 11. P. 1509. https://doi.org/10.1134/S1061934824700904
- Bueno L., Meloni G.N., Reddy S.M., Paixao T.R.L.C. Use of plastic-based analytical device, smartphone and chemometric tools to discriminate amines // RSC Adv. 2015. V. 5. № 26. P. 20148. https://doi.org/10.1039/C5RA01822F
- Ali D.S., Hassan R.O., Othman H.O., Taha H.T., Khaneghah A.M., Smaoui S. Revolutionizing detection: Smartphone-powered colorimetry for the drugs and food analysis // Microchem. J. 2024. V. 205. Article 111228. https://doi.org/10.1016/j.microc.2024.111228
- Amelin V.G. and Emel’yanov O.E. Nondestructive control of macrolides in tableted pharmaceuticals using near-IR Fourier-transform spectrometry and digital colorimetry // J. Anal. Chem. 2024. V. 79. № 12. P. 1773. https://doi.org/10.1134/S106193482470134X
- Kant T., Shrivas K., Tejwani A., Tandey K., Sharma A., Gupta S. Progress in the design of portable colorimetric chemical sensing devices // Nanoscale. 2023. V. 15. № 47. P. 19016. https://doi.org/10.1039/d3nr03803c
- Mohan B., Sasaki Y., Minami T. Paper-based optical sensor arrays for simultaneous detection of multi-targets in aqueous media: A review // Anal. Chim. Acta. 2024. V. 1313. Article 342741. https://doi.org/10.1016/j.aca.2024.342741
- Sidhartha E., Ronald T. Performance evaluation of semi-quantitative urine albumin creatinine ratio using meditape UC-11A strip test. Indones // J. Clin. Pathol. Med. Labor. 2024. V. 30. № 3. P. 213. https://doi.org/10.24293/ijcpml.v30i3.2231
- Adlim M., Surbakti M.S., Omar A.F., Rahmayani R.F.I., Hasmar A.H., Ozmen I., Yavuz M. Detecting dissolved mercury(II) ions using chitosan-AgNP strips integrated with smartphones // RSC Adv. 2024. V. 14. № 38. P. 27504. https://doi.org/10.1039/d4ra04901b
- Tambi A., Brighu U., Gupta A.B. Assessment of reliability of H2S strip test for the screening of drinking water samples for faecal contamination // Proc. Natl. Acad. Sci. India, Sect. B. 2024. V. 94 P. 407. https://doi.org/10.1007/s40011-023-01544-6
- Gunda N.S.K., Naicker S., Shinde S., Kimbahune S., Shrivastava S., Mitra S. Mobile Water Kit (MWK): a smartphone compatible low-cost water monitoring system for rapid detection of total coliform and E. coli // Anal. Methods. 2014. V. 6. № 16. P. 6236. https://doi.org/10.1039/C4AY01245C
- Grosskopf K. A method for the determination of small quantities of mercury in air // Draeger-Hefte. 1937. V. 191. P. 3589.
- Nuchtavorn N., Rypar T., Nejdl L., Vaculovicova M., Macka M. Distance-based detection in analytical flow devices: From gas detection tubes to microfluidic chips and microfluidic paper-based analytical devices // Trends Anal. Chem. 2022. V. 150. Article 116581. https://doi.org/10.1016/j.trac.2022.116581
- Rypar T., Vojtech A., Marketa V., Macka M. Paper-fluidic devices with a selective molecularly imprinted polymer surface for instrumentation-free distance-based detection of protein biomarkers // Sens. Actuators B. 2021. V. 341. Article 129999. https://doi.org/10.1016/j.snb.2021.129999
- Nah S.H., Kim J.B., Chui H.N.T., Suh Y., Yang S. Enhanced colorimetric detection of volatile organic compounds using a dye‐incorporated photonic crystal‐based sensor array // Adv. Mater. 2024. V. 36(46). Article 2409297. https://doi.org/10.1002/adma.202409297
- Sree Sanker S.S., Thomas S., Nalini S., Jacob D.P., Suniya V.S., Madhusoodanan K.N. Smartphone‐based Molecularly imprinted photonic crystal hydrogel sensor for the label‐free detection of Bisphenol A // Macromol. Chem. Phys. 2024. V. 225. Article 2400043. https://doi.org/10.1002/macp.202400043
- Sree Sanker S.S., Thomas S., Nalini S., Jacob D.P., Suniya V.S., Madhusoodanan K.N. Development of molecularly imprinted photonic crystal hydrogel based smart sensor for selective uric acid detection // Microchem. J. 2024. V. 201. Article 110693. https://doi.org/10.1016/j.microc.2024.110693
- Yang Y., Yu L., Jiang X., Li Y., He X.W., Chen L., Zhang Y. Recent advances in photonic crystal-based chemical sensors // Chem. Commun. 2024. V. 60. P. 9177. https://doi.org/10.1039/D4CC01503G
- Song W., Jiang N., Wang H., Vincent J. Use of smartphone videos and pattern recognition for food authentication // Sens. Actuators B. 2020. V. 304. Article 127247. https://doi.org/10.1016/j.snb.2019.127247
- Song W., Wang H., Yun Y.-H. Smartphone video imaging: A versatile, low-cost technology for food authentication // Food Chem. 2025. V. 462. Article 140911. https://doi.org/10.1016/j.foodchem.2024.140911
- Moayedi S., Xia W., Lundergan L., Yuan H., Xu J. Zwitterionic polymers for biomedical applications: Antimicrobial and antifouling strategies toward implantable medical devices and drug delivery // Langmuir. 2024. V. 40(44). P. 23125. https://doi.org/10.1021/acs.langmuir.4c02664
- Zhu Y., Zhang J., Song J., Yang J., Du Z., Zhao W., Hongshuang G., Chiyu W., Qingsi L., Xiaojie S., Zhang L. A multifunctional pro-healing zwitterionic hydrogel for simultaneous optical monitoring of pH and glucose in diabetic wound treatment // Adv. Funct. Mater. 2020. V. 30. № 6. Article 1905493. https://doi.org/10.1002/adfm.201905493
- Shin Y.H., Gutierrez-Wing M.T., Choi J.W. Review – Recent progress in portable fluorescence sensors // J. Electrochem. Soc. 2021. V. 168. Article 017502. https://doi.org/10.1149/1945-7111/abd494
- Nath P., Mahtaba K.R., Ray A. Fluorescence-based portable assays for detection of biological and chemical analytes // Sensors. 2023. V. 23. Article 5053. https://doi.org/10.3390/s23115053
- Patel S., Shrivas K., Sinha D., Karbhal I., Patle T.K. A portable smartphone-assisted digital image fluorimetry for analysis of methiocarb pesticide in vegetables: Nitrogen-doped carbon quantum dots as a sensing probe // Spectrochim. Acta A. 2023. V. 299. Article 122824. https://doi.org/10.1016/j.saa.2023.122824
- Amelin V.G., Shogah Z.A.C., Bolshakov D.S., Tretyakov A.V. Digital colorimetry of indicator test-systems using a smartphone and chemometric analysis in determination of quinolones in pharmaceuticals // J. Appl. Spectrosc. 2022. V. 89. P. 75. https://doi.org/10.1007/s10812-022-01328-2
- Zhang C., Kim J.P., Creer M., Yang J., Liu Z. A smartphone-based chloridometer for point-of-care diagnostics of cystic fibrosis // Biosens. Bioelectron. 2017. V. 97. P. 164. https://doi.org/10.1016/j.bios.2017.05.048
- Ma Y., Cao Y., Li M., Zhang W., Qi X., Gao G., Tang B. A multimode optical sensor for highly selective and sensitive detection of hypochlorous acid in water and body fluid // Anal. Chem. 2024. V. 96(50). P. 20123. https://pubs.acs.org/doi/10.1021/acs.analchem.4c05468
- Fu W., Fu X., Li Z., Liu Z., Li X. Advances in smartphone assisted sensors for on-site detection of food safety based on fluorescence on-off-on mode: A review // Chem. Eng. J. 2024. V. 489. Article 151225. https://doi.org/10.1016/j.cej.2024.151225
- Xiao M., Liu Z., Xu N., Jiang L., Yang M., Yi C. A smartphone-based sensing system for on-site quantitation of multiple heavy metal ions using fluorescent carbon nanodots-based microarrays // ACS Sensors. 2020. V. 5. P. 870. https://doi.org/10.1021/acssensors.0c00219
- Chu S., Wang H., Du Y., Yang F., Yang L., Jiang C. Portable smartphone platform integrated with a nanoprobe-based fluorescent paper strip: Visual monitoring of glutathione in human serum for health prognosis // ACS Sustain. Chem. Eng. 2020. V. 8(22). P. 8175. https://doi.org/10.1021/ACSSUSCHEMENG.0C00690
- Wells P.K., Smutok O., Guo Z., Alexandrov K., Katz E. nanostructured interface loaded with chimeric enzymes for fluorimetric quantification of cyclosporine A and FK506 // Anal. Chem. 2022. V. 94. № 20. P. 7303. https://doi.org/10.1021/acs.analchem.2c00650
- Guo Z., Smutok O., Johnston W.A., Ayva C.E., Walden P., McWhinney B., Ungerer J.P.J., Melman A., Katz E., Alexandrov K. Circular permutated PQQ-glucose dehydrogenase as an ultrasensitive electrochemical biosensor // Angew. Chem. Int. Ed. 2022. V. 61. № 6. Article e202109005. https://doi.org/10.1002/anie.202109005
- Park J. Smartphone based lateral flow immunoassay quantifications // J. Immunol. Methods. 2024. V. 533. Article 113745. https://doi.org/10.1016/j.jim.2024.113745
- Eltzov E., Guttel S., Kei A.L.Y, Sinawang P.D., Ionescu R.E., Marks R.S. Lateral flow immunoassays – from paper strip to smartphone technology // Electroanalysis. 2015. V. 27. № 9. P. 2116. https://doi.org/10.1002/elan.201500237
- Foysal K.H., Seo S.E., Kim M.J., Kwon O.S., Chong J.W. Analyte quantity detection from lateral flow assay using a smartphone // Sensors. 2019. V. 19. № 21. Article 4812. https://doi.org/10.3390/s19214812
- Rong Z., Bai Z., Li J., Tang H., Shen T., Wang Q., Wang C., Xiao R., Wang S. Dual-color magnetic-quantum dot nanobeads as versatile fluorescent probes in test strip for simultaneous point-of-care detection of free and complexed prostate-specific antigen // Biosens. Bioelectron. 2019. V. 145. Article 111719. https://doi.org/10.1016/j.bios.2019.111719
- Yalcin E., Erkmen C., Taskin-Tok T., Caglayan M.G. Fluorescence chemosensing of meldonium using a cross-reactive sensor array // Analyst. 2020. V. 145. № 9. P. 3345. https://doi.org/10.1039/d0an00209g
- Xin X., Liu H., Zhong N., Zhao M., Zhong D., Chang H., Tang B., He Y., Peng C., He X. A highly sensitive plastic optic-fiber with a molecularly imprinted polymer coating for selective detection of 4-chlorophenol in water // Sens. Actuators B. 2022. V. 357. Article 131468. https://doi.org/10.1016/j.snb.2022.131468
- Gou T., Hu J., Wu W., Ding X., Zhou S., Fang W., Mu Y. Smartphone-based mobile digital PCR device for DNA quantitative analysis with high accuracy // Biosens. Bioelectron. 2018. V. 120. P. 144. https://doi.org/10.1016/j.bios.2018.08.030
- Campuzano S., Pedrero M., Yáñez-Sedeño P., Pingarrón J.M. New challenges in point of care electrochemical detection of clinical biomarkers // Sens. Actuators B. 2021. V. 345. Article 130349. https://doi.org/10.1016/j.snb.2021.130349
- van Dongen J.E., Berendsen J.T.W., Steenbergen R.D.M., Wolthuis R.M.F., Eijkel J.C.T., Segerink L.I. Point-of-care CRISPR/Cas nucleic acid detection: Recent advances, challenges and opportunities // Biosens. Bioelectron. 2020. V. 166. Article 112445. https://doi.org/10.1016/j.bios.2020.112445
- Gootenberg J.S., Abudayyeh O.O., Lee J.W., Essletzbichler P., Dy A.J., Joung J., Verdine V., Donghia N., Daringer N.M., Freije C.A., Myhrvold C., Bhattacharyya R.P., Livny J., Regev A., Koonin E.V., Hung D.T., Sabeti P.C., Collins J.J., Zhang F. Nucleic acid detection with CRISPR-Cas13a/C2c2 // Science. 2017. V. 356(6336). P. 438–442. https://doi.org/10.1126/science.aam9321
- Katzmeier F., Aufinger L., Dupin A., Quintero J., Lenz M., Bauer L., Klumpe S., Sherpa D., Dürr B., Honemann M., Styazhkin I., Simmel F.C., Heymann M. A low-cost fluorescence reader for in vitro transcription and nucleic acid detection with Cas13a // PloS One. 2019. V. 14. № 12. Article e0220091. https://doi.org/10.1371/journal.pone.0220091
- Zong H., Zhang Y., Liu X., Xu Z., Ye J., Lu S., Guo X., Yang Z., Zhang X., Chai M., Fan M., Liao Y., Yang W., Wu Y., Zhang D. Recent trends in smartphone‐based optical imaging biosensors for genetic testing: A review // View. 2023. V. 4. № 4. Article 20220062. https://doi.org/10.1002/VIW.20220062
- Yu T., Zhang S., Matei R., Marx W., Beisel C.L., Wei Q. Coupling smartphone and CRISPR–Cas12a for digital and multiplexed nucleic acid detection // AIChE J. 2021. V. 67. № 12. Article e17365. https://doi.org/10.1002/aic.17365
- Lázaro A., Maquieira A., Tortajada-Genaro L.A. Discrimination of single-nucleotide variants based on an allele-specific hybridization chain reaction and smartphone detection // ACS Sensors. 2022. V. 7. № 3. P. 758. https://doi.org/10.1021/acssensors.1c02220
- Yang H., Xia M., Yang W., Liu H., Ni P., Lu Y. Smartphone-assisted paper-based analytical device integrated with photo-responsive oxidase mimetic for colorimetric detection of carbosulfan // Sens. Actuators B. 2025. V. 428. Article 137231. https://doi.org/10.1016/j.snb.2025.137231
- Jesuraj R., Perumal P. Bimetal (Ni-Cu)metal-organic framework as an efficient peroxidase nanozyme integrated with a smartphone-assisted paper-based colorimetric sensor for carbendazim detection in food samples // J. Food Compos. Anal. 2025. V. 139. Article 107149. https://doi.org/10.1016/j.jfca.2024.107149
- Li Y., Wu S., Lu H., Xu S. Ratiometric fluorescent probe and smartphone-based visual recognition for H2O2 and organophosphorus pesticide based on Ce3+/Ce4+ cascade enzyme reaction // Food Chem. 2025. V. 469. Article 142577. https://doi.org/10.1016/j.foodchem.2024.142577
- Sahare T., Singh N., Sahoo B.N., Josh A. Smartphone-enhanced nanozyme sensors: Colorimetric and fluorescence sensing techniques // Biosens. Bioelectron.: X. 2024. V. 21. Article 100544. https://doi.org/10.1016/j.biosx.2024.100544
- Chen X., Lin T., Su J., Hou L., Zhao S. Boric acid functionalized Cu2–xSe nanozyme for the immunomagnetic bead-based colorimetric assay of Escherichia coli O157:H7 coupled with smartphone // Microchem. J. 2025. V. 209. Article 112713. https://doi.org/10.1016/j.microc.2025.112713
- Zhang Y., Yuanyuan Cui, Mengmeng Sun, Tanke Wang, Tao Liu, Xianxiang Dai, Ping Zou, Ying Zhao, Xianxiang Wang, Yanying Wang, Man Zhou, Gehong Su, Chun Wu, Huadong Yin, Hanbing Rao, Zhiwei Lu. Deep learning-assisted smartphone-based molecularly imprinted electrochemiluminescence detection sensing platform: Protable device and visual monitoring furosemide // Biosens. Bioelectron. 2022. V. 209. Article 114262. https://doi.org/10.1016/j.bios.2022.114262
- Zhan P., Peil A., Jiang Q., Wang D., Mousavi S., Xiong Q., Shen Q., Shang Y., Ding B., Lin C., Ke Y., Liu N. Recent advances in DNA origami-engineered nanomaterials and applications // Chem. Rev. 2023. V. 123. № 7. P. 3976. https://doi.org/10.1021/acs.chemrev.3c00028
- Domljanovic I., Loretan M., Kempter S., Acuna G.P., Kocabey S., Ruegg C. DNA origami book biosensor for multiplex detection of cancer-associated nucleic acids // Nanoscale. 2022. V. 14(41). P. 15432. https://doi.org/10.1039/d2nr03985k
- Mahato K., Wang J. Electrochemical sensors: From the bench to the skin // Sens. Actuators B. 2021. V. 344. Article 130178. https://doi.org/10.1016/j.snb.2021.130178
- Zheng L., Cao M., Du Y., Liu Q., Emran M.Y., Kotb A., Sun M., Ma C.B., Zhou M. Artificial enzyme innovations in electrochemical devices: Advancing wearable and portable sensing technologies // Nanoscale. 2024. V. 16(1). P. 44. https://doi.org/10.1039/D3NR05728C
- Basarir F., Haj Y.A., Zou F., De S., Nguyen A., Frey A., Haider I., Sariola V., Vapaavuori J. Edible and biodegradable wearable capacitive pressure sensors: A paradigm shift toward sustainable electronics with bio‐based materials // Adv. Funct. Mater. 2024. V. 34(39). Article 2403268. https://doi.org/10.1002/adfm.202403268
- Perera G.S., Rahman M.A., Blazevski A., Wood A., Walia S., Bhaskaran M., Sriram S. rapid conductometric detection of SARS-CoV-2 proteins and its variants using molecularly imprinted polymer nanoparticles // Adv. Mater. Technol. 2023. V. 8(3). Article 202200965. https://doi.org/10.1002/admt.202200965
- Li Z., Xu D., Zhang D., Yamaguchi Y. A portable instrument for on-site detection of heavy metal ions in water // Anal. Bioanal. Chem. 2021. V. 413. P. 3471. https://doi.org/10.1007/s00216-021-03292-w
- Park H., Park Y., Lakshminarayana S., Jung H.-M., Kim M.-Y., Lee K.H., Jung S. Portable all-in-one electroanalytical device for point of care // IEEE Access. 2022. V. 10. P. 68700. https://doi.org/10.1109/ACCESS.2022.3186678
- Lin Q., Zhichao Yu, Liling Lu, Xue Huang, Qiaohua Wei, Dianping Tang. Smartphone-based photoelectrochemical immunoassay of prostate-specific antigen based on Co-doped Bi2O2S nanosheets // Biosens. Bioelectron. 2023. V. 230. Article 115260. https://doi.org/10.1016/j.bios.2023.115260
- Huang Q., Chen J., Zhao Y., Huang J., Liu H. Advancements in electrochemical glucose sensors // Talanta. 2025. V. 281. Article 126897. https://doi.org/10.1016/j.talanta.2024.126897
- Xu J., Yan Z., Liu Q. Smartphone-based electrochemical systems for glucose monitoring in biofluids: A review // Sensors. 2022. V. 22. Article 5670. https://doi.org/10.3390/s22155670
- Manikandan R., Rajarathinam T., Jayaraman S., Jang H.G., Yoon J.H., Lee J., Paik H.J., Chang S.C. Recent advances in miniaturized electrochemical analyzers for hazardous heavy metal sensing in environmental samples // Coord. Chem. Rev. 2024. V. 499. Article 215487. https://doi.org/10.1016/j.ccr.2023.215487
- Biyani M., Biyani R., Tsuchihashi T., Takamura Y., Ushijima H., Tamiya E., Biyani M. DEP-On-Go for simultaneous sensing of multiple heavy metals pollutants in environmental samples // Sensors. 2017. V. 17. Article 45. https://doi.org/10.3390/s17010045
- Sun Y., Xu H., Zhou D., Xia C., Liu W., Cui A., Wang Z., Zheng W., Shan G., Huang J., Wang X. A portable integrated electrochemical sensing system for on-site nitrite detection in food // Small. 2024. V. 20(22). Article e2309357. https://doi.org/10.1002/smll.202309357
- Madani S. and Hatamie A. Portable mini-electrochemical cell: Integrating microsampling and micro-electroanalysis for multipurpose on-site nitrite sensing // Langmuir. 2024. V. 40(48). P. 25580. https://doi.org/10.1021/acs.langmuir.4c03398
- Jiang W., Zhuo Z., Zhang X., Luo H., He L., Yang Y., Wen Y., Huang Z., Wang P. Smartphone-based electrochemical sensor for cost-effective, rapid and on site detection of chlorogenic acid in herbs using biomass-derived hierarchically porous carbon synthesized by a soft-hard dual template method // Food Chem. 2024. V. 431. Article 137165. https://doi.org/10.1016/j.foodchem.2023.137165
- Xia H.Q., Zhu C., Qiu D., Zeng J. A smartphone-based electrochemical sensing platform for the portable and simultaneous determination of flavonoids in Citri Reticulatae Pericarpium // Anal. Chim. Acta. 2024. V. 1319. Article 342981. https://doi.org/10.1016/j.aca.2024.342981
- Zhang Y., Zhang C., Reis N.M., Chen W., Liang B., Liu Z. A portable microfluidic electrochemical sensor with nonlinear fit strategy for wide-range uric acid detection // Microchem. J. 2024. V. 203. Article 110908. https://doi.org/10.1016/j.microc.2024.110908
- Barman S.C., Ali M., Hasan E.A., Wehbe N., Alshareef H.N., Alsulaiman D. Smartphone-interfaced electrochemical biosensor for microRNA detection based on laser-induced graphene with π–π stacked peptide nucleic acid probes // ACS Mater. Lett. 2024. V. 6(3). P. 837. https://doi.org/10.1021/acsmaterialslett.3c01225
- Yang B., Zeng X., Ge Y., Liu W., Hao W., Long C., Wang L., Wu Q., Wen Y., Zhang J. A new method for rapid, portable, low-cost detection of Clostridium perfringens β2 toxin in animal fecal using smartphone-based electrochemical immunosensor // Microchem. J. 2024. V. 198. Article 110138. https://doi.org/10.1016/j.microc.2024.110138
- Alam A.U., Clyne D., Jin H., Hu N.-X., Deen M.J. Fully integrated, simple, and low-cost electrochemical sensor array for in situ water quality monitoring // ACS Sensors. 2020. V. 5(2). P. 412. https://doi.org/10.1021/acssensors.9b02095
- Jiang Y., Sima Y., Liu L., Zhou C., Shi S., Wan K., Chen A., Tang N., He Q., Liu J. Research progress on portable electrochemical sensors for detection of mycotoxins in food and environmental samples // Chem. Eng. J. 2024. V. 485. Article 149860. https://doi.org/10.1016/j.cej.2024.149860
- Dai Z. Recent advances in the development of portable electrochemical sensors for controlled substances // Sensors. 2023. V. 23. Article 3140. https://doi.org/10.3390/s23063140
- Зубик А.Н., Рудницкая Г.Е., Евстрапов А.А., Лукашенко Т.А. Устройства point-of-care (POC): классификация и основные требования // Научное приборостроение. 2022. № 3. URL: https://cyberleninka.ru/article/n/ustroyst-va-point-of-care-poc-klassifikatsiya-i-os-novnye-trebovaniya (дата обращения 17.01.2025).
- Yang K., Peretz-Soroka H., Liu Y., Lin F. Novel developments in mobile sensing based on the integration of microfluidic devices and smartphones // Lab Chip. 2016. V. 16(6). P. 943. https://doi.org/10.1039/c5lc01524c
- Buttkewitz M.A., Heuer C., Bahnemann J. Sensor integration into microfluidic systems: trends and challenges // Curr. Opin. Biotechnol. 2023. V. 83. Article 102978. https://doi.org/10.1016/j.copbio.2023.102978
- Khalaf E.M., Jabbar H.S., Romero-Parra R.M., Al-Awsi G.R.L., Budi H.S., Altamimi A.S., Gatea M.A., Falih K.T., Singh K., Alkhuzai K.A. Smartphone-assisted microfluidic sensor as an intelligent device for on-site determination of food contaminants: Developments and applications // Microchem. J. 2023. V. 190. Article 108692. https://doi.org/10.1016/j.microc.2023.108692
- Tsagkaris A.S., Nelis J.L.D., Campbell K., Elliott C.T., Pulkrabova J., Hajslova J. Ch. 8 – Smartphone and microfluidic systems in medical and food analysis / Microfluidic Biosensors / Eds. Mak W.C., Ho A.H.P. Academic Press, 2023. P. 233. https://doi.org/10.1016/B978-0-12-823846-2.00002-X
- Hu J., Cui X., Gong Y., Xu X., Gao B., Wen T., Lu T.J., Xu F. Portable microfluidic and smartphone-based devices for monitoring of cardiovascular diseases at the point of care // Biotechnol. Adv. 2016. V. 34(3). P. 305. https://doi.org/10.1016/j.biotechadv.2016.02.008
- Xu D., Huang X., Guo J., Ma X. Automatic smartphone-based microfluidic biosensor system at the point of care // Biosens. Bioelectron. 2018. V. 110. P. 78. https://doi.org/10.1016/j.bios.2018.03.018
- Xing G., Ai J., Wang N., Pu Q. Recent progress of smartphone-assisted microfluidic sensors for point of care testing // Trends Anal. Chem. 2022. V. 157. Article 116792. https://doi.org/10.1016/j.trac.2022.116792
- Yang S.M., Lv S., Zhang W., Cui Y. Microfluidic point-of-care (POC) devices in early diagnosis: A review of opportunities and challenges // Sensors. 2022. V. 22(4). Article 1620. https://doi.org/10.3390/s22041620
- Chen A., Wang R., Bever C.R., Xing S., Hammock B.D., Pan T. Smartphone-interfaced lab-ona-chip devices for field-deployable enzyme-linked immunosorbent assay // Biomicrofluidics. 2014. V. 8(6). Article 064101. https://doi.org/10.1063/1.4901348
- Iakovlev A.P., Erofeev A.S., Gorelkin P.V. Novel pumping methods for microfluidic devices: A comprehensive review // Biosensors. 2022. V. 12. Article 956. https://doi.org/10.3390/bios12110956
- Hassan S.U., Tariq A., Noreen Z., Donia A., Zaidi S.Z.J., Bokhari H., Zhang X. Capillary-driven flow microfluidics combined with smartphone detection: An emerging tool for point-of-care diagnostics // Diagnostics (Basel). 2020. V. 10(8). Article 509. https://doi.org/10.3390/diagnostics10080509
- Cao Q., Chen X. Microfluidics detection technologies and applications / Advances in Analytical and Coordination Chemistry – Applications and Innovations / Eds. Oliveira M., Holló B.B., Zafar M., De Aguiar Andrade E.H., Radanovic M.M. IntechOpen, 2025. https://doi.org/10.5772/intechopen.1008741
- Nisarga R., Pandit P., Sangshetti J., Arote R.B. Ch. 11 – Microfluidics in bioanalytical chemistry / Microfluidics-Aided Technologies / Eds.: Bodas D., Gajbhiye V. Academic Press, 2025. P. 237. https://doi.org/10.1016/B978-0-323-95533-1.00001-1
- Xiong X., Guo C., Yan G., Han B., Wu Z., Chen Y., Xu S., Shao P., Song H., Xu X., Han J. Simultaneous cross-type detection of water quality indexes via a smartphone-app integrated microfluidic paper-based platform // ACS Omega. 2022. V. 7(48). P. 44338–44345. https://doi.org/10.1021/acsomega.2c05938
- Duan S., Cai T., Chen L., Wang X., Zhang S., Han B., Lim E.G., Hoettges K., Hu Y., Song P. An integrated paper-based microfluidic platform for screening of early-stage Alzheimer’s disease by detecting Aβ42 // Lab Chip. 2025. V. 25. P. 512. https://doi.org/10.1039/d4lc00748d
- Guo W., Tao Y., Mao K., Liu W., Xue R., Ge Z., Ren Y. Portable general microfluidic device with complex electric field regulation functions for electrokinetic experiments // Lab on a Chip. 2023. V. 23(1). P. 157. https://doi.org/10.1039/D2LC01053D
- Yuan H., Miao Z., Wan C., Wang J., Liu J., Li Y., Liu B.F. Recent advances in centrifugal microfluidics for point-of-care testing // Lab on a Chip. 2025. V. 25. P. 1015. https://doi.org/10.1039/D4LC00779D
- Strohmaier-Nguyen D., Carina Horn C., Baeumner A.J. Innovations in one-step point-of-care testing within microfluidics and lateral flow assays for shaping the future of healthcare // Biosens. Bioelectron. 2025. V. 267. Article 116795. https://doi.org/10.1016/j.bios.2024.116795
- Akarapipad P., Kaarj K., Breshears L.E., Sosnowski K., Baker J., Nguyen B.T., Eades C., Uhrlaub J.L., Quirk G., Nikolich-Žugich J., Worobey M., Yoon J.Y. Smartphone-based sensitive detection of SARSCoV-2 from saline gargle samples via flow profile analysis on a paper microfluidic chip // Biosens. Bioelectron. 2022. V. 207. Article 114192. https://doi.org/10.1016/j.bios.2022.114192
- The first at-home hormone tracking minilab. https://inne.io/pages/minilab (дата обращения 14.04.2025).
- Ballard Z.S., Joung H.A., Goncharov A., Liang J., Nugroho K., Di Carlo D., Garner O.B., Ozcan A. Deep learning-enabled point-of-care sensing using multiplexed paper-based sensors // NPJ Digit. Med. 2020. V. 3. P. 66. https://doi.org/10.1038/s41746-020-0274-y
- Barbosa A.I., Gehlot P., Sidapra K., Edwards A.D., Reis N.M. Portable smartphone quantitation of prostate specificantigen (PSA) in a fluoropolymer microfluidic device // Biosens. Bioelectron. 2015. V. 70. P. 5. https://doi.org/10.1016/j.bios.2015.03.006
- Joh D.Y., Heggestad J.T., Zhang S. Anderson G.R., Bhattacharyya J., Wardell S.E., Wall S.A., Cheng A.B., Albarghouthi F., Liu J., Oshima S., Hucknall A.M., Hyslop T., Hall A.H.S., Wood K.C., Shelley Hwang E., Strickland K.C., Wei Q., Chilkoti A. Cellphone enabled point-of-care assessment of breast tumor cytology and molecular HER2 expression from fine-needle aspirates // NPJ Breast Cancer. 2021. V. 7. Article 85. https://doi.org/10.1038/s41523-021-00290-0
- Hu F., Li J., Zhang Z., Li M., Zhao, S., Li Z. Peng N. Smartphone-based droplet digital LAMP device with rapid nucleic acid isolation forhighly sensitive point-ofcare detection // Anal. Chem. 2020. V. 92. P. 2258. https://doi.org/10.1021/acs.analchem.9b04967
- Wu T., Shen C., Zhao Z., Lyu M., Bai H., Hu X., Zhao J., Zhang R., Qian K., Xu G., Ying B. Integrating paper-based microfluidics and lateral flow strip into nucleic acid amplification device toward rapid, lowcost, and visual diagnosis of multiple mycobacteria // Small Methods. 2024. V. 8(12). Article e2400095. https://doi.org/10.1002/smtd.202400095
- Kaarj K., Akarapipad P., Yoon J.Y. Simpler, faster, and sensitive Zika virus assay using smartphone detection of loop-mediated isothermal amplification on paper microfluidic chips // Sci. Rep. 2018. V. 8. Article 12438. https://doi.org/10.1038/s41598-018-30797-9
- Draz M.S., Kochehbyoki K.M., Vasan A., Battalapalli D., Sreeram A., Kanakasabapathy M.K., Kallakuri S., Tsibris A., Kuritzkes D.R., Shafiee H. DNA engineered micromotors powered by metal nanoparticles for motion based cellphone diagnostics // Nat. Commun. 2018. V. 9. Article 4282. https://doi.org/10.1038/s41467-018-06727-8
- Thio S.K., Park S.Y. A review of optoelectrowetting (OEW): From fundamentals to lab-on-a-smartphone (LOS) applications to environmental sensors // Lab Chip. 2022. V. 22(21). P. 3987. https://doi.org/10.1039/D2LC00372D
- Jiang D., Lee S., Bae S.W., Park S.-Y. Smartphone integrated optoelectrowetting (SiOEW) for on-chip sample processing and microscopic detection of water quality // Lab Chip. 2018. V. 18(3). P. 532. https://doi.org/10.1039/c7lc01095h
- Thio S.K., Bae S.W., Park S.Y. Lab on a smartphone (LOS): A smartphone-integrated, plasmonic-enhanced optoelectrowetting (OEW) platform for onchip water quality monitoring through LAMP assays // Sens. Actuators B. 2022. V. 358. Article 131543. https://doi.org/10.1016/j.snb.2022.131543
- Liu C.C., Ko C.H., Fu L.M., Jhou Y.L. Light-shading reaction microfluidic PMMA/paper detection system for detection of cyclamate concentration in foods // Food Chem. 2023. V. 400. Article 134063. https://doi.org/10.1016/j.foodchem.2022.134063
- Liu C.C., Wang Y.N., Fu L.M., Chen K.L. Microfluidic paper-based chip platform for benzoic acid detection in food // Food Chem. 2018. V. 249. P. 162. https://doi.org/10.1016/j.foodchem.2018.01.004
- Rezaei N., Daneshvar S.S., Nasihatkon B., Seidi S., Rezazadeh M. The application of barcode readable assay and linear regression RGB analysis using a customized smartphone app in on-chip electromembrane extraction for simultaneous determination of heavy metal ions // Microchem. J. 2024. V. 197. Article 109702. https://doi.org/10.1016/j.microc.2023.109702
- Phadungcharoen N., Pengwanput N., Nakapan A., Sutitaphan U., Thanomklom P., Jongudomsombut N., Chinsriwongkul A., Rojanarata T. Ion pair extraction coupled with digital image colorimetry as a rapid and green platform for pharmaceutical analysis: An example of chlorpromazine hydrochloride tablet assay // Talanta. 2020. V. 219. Article 121271. https://doi.org/10.1016/j.talanta.2020.121271
- Peng B., Zhou J., Xu J., Fan M., Ma Y., Zhou M., Li T., Zhao S. A smartphone-based colorimetry after dispersive liquid–liquid microextraction for rapid quantification of calcium in water and food samples // Microchem. J. 2019. V. 149. Article 104072. https://doi.org/10.1016/j.microc.2019.104072
- Lima M.J.A, Carina F. Nascimento C.F., Rocha F.R.P. Feasible photometric measurements in liquid–liquid extraction by exploiting smartphone-based digital images // Anal. Methods. 2017. V. 9. P. 2220. https://doi.org/10.1039/C7AY00388A
- Tang S., Qi T., Xia D., Xu M., Xu M., Zhu A., Shen W., Lee H.K. Smartphone nano-colorimetric determination of hydrogen sulfide in biosamples after silver-gold core-shell nanoprism-based headspace single-drop microextraction // Anal. Chem. 2019. V. 91. P. 5888. https://doi.org/10.1021/acs.analchem.9b00255
- Ullah N., Tuzen M. A new trend and future perspectives of the miniaturization of conventional extraction methods for elemental analysis in different real samples: A review. // Crit. Rev. Anal. Chem. 2024. V. 54(6). P. 1729. https://doi.org/10.1080/10408347.2022.2128635
- Amelin V.G., Shogah Z.A., Bolshakov D.S. Sorption-fluorimetric determination of quinolones in waste and natural waters with a smartphone // Moscow Univ Chem. Bull. 2021. V. 76. P. 262. https://doi.org/10.3103/S0027131421040027
- Xue C., Zhang Y., Liu B., Gao S., Yang H., Li P., Hoa N.D., Xu Y., Zhang Z., Niu J., Liao X., Cui D., Jin H. Smartphone case-based gas sensing platform for on-site acetone tracking // ACS Sens. 2022. V. 7(5). P. 1581. https://doi.org/10.1021/acssensors.2c00603
- Doğan V., Evliya M., Kahyaoglu L.N., Kılıç V. Onsite colorimetric food spoilage monitoring with smartphone embedded machine learning // Talanta. 2024. V. 266. Article 125021. https://doi.org/10.1016/j.talanta.2023.125021
- Majhi S.M. Mirzaei A., Kim H.W., Kim S.S., Kim T.W. Recent advances in energy-saving chemiresistive gas sensors: A review // Nano Energy. 2021. V. 79. Article 105369. https://doi.org/10.1016/j.nanoen.2020.105369
- Zong B., Wu S., Yang Y., Li Q., Tao T., Mao S. Smart gas sensors: Recent developments and future prospective // Nano-Micro Lett. 2025. V. 17(1). P. 54. https://doi.org/10.1007/s40820-024-01543-w
- Baram G.I. Portable liquid chromatograph for mobile laboratories I. Aims // J. Chromatogr. A. 1996. V. 728(1–2). P. 387. https://doi.org/10.1016/0021-9673(95)01271-0
- Sharma S., Tolley L.T., Tolley H.D., Plistil A., Stearns S.D., Lee M.L. Hand-portable liquid chromatographic instrumentation // J. Chromatogr. A. 2015. V. 1421. P. 38. https://doi.org/10.1016/j.chroma.2015.07.119
- Rahimi F., Chatzimichail S., Saifuddin A., Surman A.J., Taylor-Robinson S.D., Salehi-Reyhani A. A review of portable high-performance liquid chromatography: The future of the field? // Chromatographia. 2020. V. 83. P. 1165. https://doi.org/10.1007/s10337-020-03944-6
- Delivering accuracy and precision in fresh and fully saline waters. https://aquamonitrix. com/wp-content/uploads/2024/04/NOx-Monitrix-Tech-specs-updated-Apr-2024.pdf (дата обращения 14.04.2025).
- Chen Y., Qiu J., Xu K., Zhu H., Zhang S., Lu X., Li X. Development of a portable gas chromatograph–mass spectrometer embedded with a low-temperature adsorption thermal desorption module for enhanced detection of volatile organic compounds // Analyst. 2025. V. 150. P. 470. https://doi.org/10.1039/D4AN01484G
- Platonov I.A., Platonov V.I. Goryunov M.G. A gas chromatograph based on planar systems // J. Anal. Chem. 2015. V. 70. P. 1158. https://doi.org/10.1134/S1061934815090130)
Supplementary files


