Vol 79, No 2 (2024)
Extendability and qualitative properties of solutions of Riccati's equation
Abstract
На вещественной оси рассматривается уравнение Риккати с непрерывными коэффициентами и неотрицательным дискриминантом правой части. Исследуется продолжаемость его решений на бесконечный интервал. Найдена асимптотика его решений в зависимости от их начальных значений и свойств функций, являющихся корнями правой части уравнения. Получены результаты об асимптотическом поведении решений, определённых в окрестности $\pm\infty$. Исследована структура множества ограниченных решений уравнения в случае, когда корни правой части уравнения – различные на всей их области определения непрерывно дифференцируемые функции, монотонно стремящиеся к пределам при $x\to\pm\infty$. Дополнены, усилены или уточнены некоторые известные результаты. Библиография: 47 названий.
Uspekhi Matematicheskikh Nauk. 2024;79(2):3-42
3-42
Minimax solutions of Hamiltoni–Jacobi equations in dynamical optimization problems for hereditary systems
Abstract
Настоящая статья содержит обзор результатов, касающихся развития теории уравнений Гамильтона–Якоби для наследственных динамических систем. Особенность этих систем состоит в том, что скорость изменения их состояния зависит не только от текущего положения, как в классическом случае, но и от всего пройденного пути – истории движения. Большая часть статьи посвящена динамическим системам, движение которых описывается при помощи функционально-дифференциальных уравнений запаздывающего типа. Кроме того, затрагиваются и более общие системы, описываемые функционально-дифференциальными уравнениями нейтрального типа, а также тесно связанные с ними системы, описываемые дифференциальными уравнениями с производными дробного порядка. Рассматриваются так называемые наследственные уравнения Гамильтона–Якоби, которые для указанных классов систем играют роль, аналогичную роли классических уравнений Гамильтона–Якоби в задачах динамической оптимизации обыкновенных дифференциальных систем. В контексте приложений к задачам управления основное внимание уделяется минимаксному подходу к понятию обобщенного решения рассматриваемых уравнений Гамильтона–Якоби, а также его связи с вязкостным подходом. Приводятся опирающиеся на обсуждаемые конструкции методы построения оптимальных стратегий управления по принципу обратной связи с памятью истории движения. Библиография: 183 названия.
Uspekhi Matematicheskikh Nauk. 2024;79(2):43-144
43-144
Local well-posedness of problems with characteristic free boundaries for hyperbolic systems of conservation laws
Abstract
Доказательство локального по времени существования и единственности гладкого решения задачи со свободной границей для гиперболической системы законов сохранения имеет дополнительные трудности, если свободная граница является характеристикой этой системы. Они связаны с потерей контроля над производными по нормальному к границе направлению, а также с возможной неэллиптичностью символа свободной границы. Другой особенностью задач с характеристическими свободными границами является то, что в абсолютном большинстве случаев в априорных оценках решений соответствующих линеаризованных задач имеет место потеря производных от коэффициентов и правых частей. Более того, граничные условия линеаризованной задачи могут оказаться недиссипативными, что затрудняет применение энергетического метода. В статье дано описание методов, позволяющих преодолевать указанные трудности. Основными примерами являются задачи со свободными границами для уравнений Эйлера и уравнений магнитной гидродинамики идеальной сжимаемой жидкости, для которых дается обзор современных результатов об их локальной корректности. Библиография: 61 название.
Uspekhi Matematicheskikh Nauk. 2024;79(2):145-182
145-182
Chebyshev sets that are unions of planes
Uspekhi Matematicheskikh Nauk. 2024;79(2):183-184
183-184
Commutativity of involutive two-valued groups
Uspekhi Matematicheskikh Nauk. 2024;79(2):185-186
185-186
Maps of knots in a cylinder to planar virtual knots
Uspekhi Matematicheskikh Nauk. 2024;79(2):187-188
187-188
Marat Mirzaevich Arslanov (on his eightieth birthday)
Uspekhi Matematicheskikh Nauk. 2024;79(2):189-193
189-193
