Local well-posedness of problems with characteristic free boundaries for hyperbolic systems of conservation laws
- Authors: Trakhinin Y.L.1
-
Affiliations:
- Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
- Issue: Vol 79, No 2 (2024)
- Pages: 145-182
- Section: Articles
- URL: https://journals.rcsi.science/0042-1316/article/view/255954
- DOI: https://doi.org/10.4213/rm10150
- ID: 255954
Cite item
Abstract
About the authors
Yuri Leonidovich Trakhinin
Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Email: trakhin@math.nsc.ru
ORCID iD: 0000-0001-8827-2630
Scopus Author ID: 55980402200
ResearcherId: D-2229-2009
Doctor of physico-mathematical sciences, no status
References
- S. Alinhac, “Existence d'ondes de rarefaction pour des systèmes quasi-lineaires hyperboliques multidimensionnels”, Comm. Partial Differential Equations, 14:2 (1989), 173–230
- А. М. Блохин, Интегралы энергии и их приложения к задачам газовой динамики, Наука, Новосибирск, 1986, 240 с.
- D. Catania, M. D'Abbicco, P. Secchi, “Stability of the linearized MHD-Maxwell free interface problem”, Commun. Pure Appl. Anal., 13:6 (2014), 2407–2443
- D. Catania, M. D'Abbicco, P. Secchi, “Weak stability of the plasma-vacuum interface problem”, J. Differential Equations, 261:6 (2016), 3169–3219
- Shuxing Chen, “Initial boundary value problems for quasilinear symmetric hyperbolic systems with characteristic boundary”, Front. Math. China, 2:1 (2007), 87–102
- J.-F. Coulombel, A. Morando, P. Secchi, P. Trebeschi, “A priori estimates for 3D incompressible current-vortex sheets”, Comm. Math. Phys., 311:1 (2012), 247–275
- J.-F. Coulombel, P. Secchi, “The stability of compressible vortex sheets in two space dimensions”, Indiana Univ. Math. J., 53:4 (2004), 941–1012
- D. Coutand, J. Hole, S. Shkoller, “Well-posedness of the free-boundary compressible 3-D Euler equations with surface tension and the zero surface tension limit”, SIAM J. Math. Anal., 45:6 (2013), 3690–3767
- D. Coutand, S. Shkoller, “Well-posedness of the free-surface incompressible Euler equations with or without surface tension”, J. Amer. Math. Soc., 20:3 (2007), 829–930
- D. Coutand, S. Shkoller, “Well-posedness in smooth function spaces for the moving-boundary three-dimensional compressible Euler equations in physical vacuum”, Arch. Ration. Mech. Anal., 206:2 (2012), 515–616
- Jun Fang, Li Zhang, “Two-dimensional magnetohydrodynamics simulations of young Type Ia supernova remnants”, Monthly Notices Roy. Astronom. Soc., 424:4 (2012), 2811–2820
- H. Freistühler, Y. Trakhinin, “Symmetrizations of RMHD equations and stability of relativistic current-vortex sheets”, Classical Quantum Gravity, 30:8 (2013), 085012, 17 pp.
- K. O. Friedrichs, “The identity of weak and strong extensions of differential operators”, Trans. Amer. Math. Soc., 55:1 (1944), 132–151
- K. O. Friedrichs, “Symmetric hyperbolic linear differential equations”, Comm. Pure Appl. Math., 7:2 (1954), 345–392
- С. К. Годунов, “Интересный класс квазилинейных систем”, Докл. АН СССР, 139:3 (1961), 521–523
- С. К. Годунов, “Симметрическая форма уравнений магнитной гидродинамики”, Числ. методы механики сплошной среды, 3:1 (1972), 26–34
- С. К. Годунов, Уравнения математической физики, 2-е изд., испр. и доп., Наука, М., 1979, 391 с.
- С. К. Годунов, Е. И. Роменский, Элементы механики сплошных сред и законы сохранения, Научная книга, Новосибирск, 1998, 280 с.
- J. P. Goedbloed, R. Keppens, S. Poedts, Advanced magnetohydrodynamics: with applications to laboratory and astrophysical plasmas, Cambridge Univ. Press, Cambridge, 2010, 650 pp.
- Yan Guo, I. Tice, “Compressible, inviscid Rayleigh–Taylor instability”, Indiana Univ. Math. J., 60:2 (2011), 677–712
- L. Hörmander, “The boundary problems of physical geodesy”, Arch. Ration. Mech. Anal., 62:1 (1976), 1–52
- Juhi Jang, N. Masmoudi, “Well-posedness of compressible Euler equations in a physical vacuum”, Comm. Pure Appl. Math., 68:1 (2015), 61–111
- T. Kato, “Quasi-linear equations of evolution, with applications to partial differential equations”, Spectral theory and differential equations, Lecture Notes in Math., 448, Springer, Berlin, 1975, 25–70
- H.-O. Kreiss, “Initial boundary value problems for hyperbolic systems”, Comm. Pure Appl. Math., 23:3 (1970), 277–298
- Л. Д. Ландау, Е. М. Лифшиц, Гидродинамика, Теоретическая физика, VI, 3-е изд., перераб., Наука, М., 1986, 736 с.
- Л. Д. Ландау, Е. М. Лифшиц, Электродинамика сплошных сред, Теоретическая физика, VIII, 3-е изд., Наука, М., 1992, 662 с.
- P. D. Lax, “Hyperbolic systems of conservation laws. II”, Comm. Pure Appl. Math., 10:4 (1957), 537–566
- H. Lindblad, “Well posedness for the motion of a compressible liquid with free surface boundary”, Comm. Math. Phys., 260:2 (2005), 319–392
- Tao Luo, Zhouping Xin, Huihui Zeng, “Well-posedness for the motion of physical vacuum of the three-dimensional compressible Euler equations with or without self-gravitation”, Arch. Ration. Mech. Anal., 213:3 (2014), 763–831
- Chenyun Luo, Junyan Zhang, “Local well-posedness for the motion of a compressible gravity water wave with vorticity”, J. Differential Equations, 332 (2022), 333–403
- N. Mandrik, Y. Trakhinin, “Influence of vacuum electric field on the stability of a plasma-vacuum interface”, Commun. Math. Sci., 12:6 (2014), 1065–1100
- A. Morando, P. Secchi, Y. Trakhinin, P. Trebeschi, “Stability of an incompressible plasma-vacuum interface with displacement current in vacuum”, Math. Methods Appl. Sci., 43:12 (2020), 7465–7483
- A. Morando, P. Secchi, P. Trebeschi, “Regularity of solutions to characteristic initial-boundary value problems for symmetrizable systems”, J. Hyperbolic Differ. Equ., 6:4 (2009), 753–808
- A. Morando, Y. Trakhinin, P. Trebeschi, “Well-posedness of the linearized problem for MHD contact discontinuities”, J. Differential Equations, 258:7 (2015), 2531–2571
- A. Morando, Y. Trakhinin, P. Trebeschi, “Local existence of MHD contact discontinuities”, Arch. Ration. Mech. Anal., 228:2 (2018), 691–742
- M. Ohno, T. Shirota, “On the initial-boundary-value problem for the linearized equations of magnetohydrodynamics”, Arch. Ration. Mech. Anal., 144:3 (1998), 259–299
- M. Ohno, Y. Shizuta, T. Yanagisawa, “The initial boundary value problem for linear symmetric systems with boundary characteristic of constant multiplicity”, J. Math. Kyoto Univ., 35:2 (1995), 143–210
- J. B. Rauch, F. J. Massey III, “Differentiability of solutions to hyperbolic initial boundary value problems”, Trans. Amer. Math. Soc., 189:3 (1974), 303–318
- M. S. Ruderman, H. J. Fahr, “The effect of magnetic fields on the macroscopic instability of the heliopause. II. Inclusion of solar wind magnetic fields”, Astron. Astrophys., 299 (1995), 258–266
- P. Secchi, “Linear symmetric hyperbolic systems with characteristic boundary”, Math. Methods Appl. Sci., 18:11 (1995), 855–870
- P. Secchi, “Some properties of anisotropic Sobolev spaces”, Arch. Math. (Basel), 75:3 (2000), 207–216
- P. Secchi, “On the Nash–Moser iteration technique”, Recent developments of mathematical fluid mechanics, Adv. Math. Fluid Mech., Birkhäuser/Springer, Basel, 2016, 443–457
- P. Secchi, Y. Trakhinin, “Well-posedness of the linearized plasma-vacuum interface problem”, Interfaces Free Bound., 15:3 (2013), 323–357
- P. Secchi, Y. Trakhinin, “Well-posedness of the plasma-vacuum interface problem”, Nonlinearity, 27:1 (2014), 105–169
- P. Secchi, Y. Trakhinin, Tao Wang, “On vacuum free boundary problems in ideal compressible magnetohydrodynamics”, Bull. London Math. Soc., 55:5 (2023), 2087–2111
- Yongzhong Sun, Wei Wang, Zhifei Zhang, “Nonlinear stability of the current-vortex sheet to the incompressible MHD equations”, Comm. Pure Appl. Math., 71:2 (2018), 356–403
- С. И. Сыроватский, “Об устойчивости тангенциальных разрывов в магнитогидродинамической среде”, ЖЭТФ, 24:6 (1953), 622–630
- Y. Trakhinin, “Existence of compressible current-vortex sheets: variable coefficients linear analysis”, Arch. Ration. Mech. Anal., 177:3 (2005), 331–366
- Y. Trakhinin, “The existence of current-vortex sheets in ideal compressible magnetohydrodynamics”, Arch. Ration. Mech. Anal., 191:2 (2009), 245–310
- Y. Trakhinin, “Local existence for the free boundary problem for nonrelativistic and relativistic compressible Euler equations with a vacuum boundary condition”, Comm. Pure Appl. Math., 62:11 (2009), 1551–1594
- Y. Trakhinin, “On the well-posedness of a linearized plasma-vacuum interface problem in ideal compressible MHD”, J. Differential Equations, 249:10 (2010), 2577–2599
- Y. Trakhinin, “Stability of relativistic plasma-vacuum interfaces”, J. Hyperbolic Differ. Equ., 9:3 (2012), 469–509
- Y. Trakhinin, “On well-posedness of the plasma-vacuum interface problem: the case of non-elliptic interface symbol”, Commun. Pure Appl. Anal., 15:4 (2016), 1371–1399
- Y. Trakhinin, “Structural stability of shock waves and current-vortex sheets in shallow water magnetohydrodynamics”, Z. Angew. Math. Phys., 71:4 (2020), 118, 13 pp.
- Y. Trakhinin, Tao Wang, “Well-posedness of free boundary problem in non-relativistic and relativistic ideal compressible magnetohydrodynamics”, Arch. Ration. Mech. Anal., 239:2 (2021), 1131–1176
- Y. Trakhinin, Tao Wang, “Well-posedness for the free-boundary ideal compressible magnetohydrodynamic equations with surface tension”, Math. Ann., 383:1-2 (2022), 761–808
- Y. Trakhinin, Tao Wang, “Nonlinear stability of MHD contact discontinuities with surface tension”, Arch. Ration. Mech. Anal., 243:2 (2022), 1091–1149
- Y. Trakhinin, Tao Wang, “Well-posedness for moving interfaces with surface tension in ideal compressible MHD”, SIAM J. Math. Anal., 54:6 (2022), 5888–5921
- А. И. Вольперт, С. И. Худяев, “О задаче Коши для составных систем нелинейных дифференциальных уравнений”, Матем. сб., 87(129):4 (1972), 504–528
- Yanjin Wang, Zhouping Xin, “Existence of multi-dimensional contact discontinuities for the ideal compressible magnetohydrodynamics”, Comm. Pure Appl. Math., 77:1 (2024), 583–629
- Дж. Б. Уизем, Линейные и нелинейные волны, Мир, М., 1977, 622 с.
Supplementary files
