Effect of crystallographic orientation on the phase transition of a finite TiNi shape memory alloy wafer.

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A simulation of a TiNi shape memory alloy plate was carried out at various crystallographic orientations using a free package for classical molecular dynamics LAMMPS. It was found that the crystallographic orientation of the plate has a significant effect on the phase transition temperature. The dependence of surface energy on temperature for crystallographic orientations (100), (110), (112), (122) was constructed. The stability of the model used was investigated, as a result of which its applicability in these calculations was confirmed.

Sobre autores

A. Pavlov

Bauman Moscow State Technical University

Email: Alex.pav.2001@yandex.ru
Moscow, 105005, Russia

A. Kartsev

RUDN University; Computational Center of Far East branch Russian Academy of Sciences

Email: Alex.pav.2001@yandex.ru
Moscow, 117198, Russia; Khabarovsk, 680000, Russia

V. Koledov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Email: Alex.pav.2001@yandex.ru
Moscow, 125009 Russia

P. Lega

RUDN University; Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: Alex.pav.2001@yandex.ru
Moscow, 117198, Russia; Moscow, 125009 Russia

Bibliografia

  1. Трусов С.Н., Чернявские А.Г. // ЖТФ. 1996. Т. 66. № 11. С. 153.
  2. Лохов В.А., Кучумов А.Г. // Рос. журн. биомеханики. 2006. № 3. С. 41.
  3. Aviram A., Ratner M.A. // Chem. Phys. Lett. 1974. V. 29. № 2. P. 277.
  4. Chernozatonskii L.A., Kosakovskaja Z.J., Fedorov E.A., Panov V.I. // Phys. Lett. A. 1995. V. 197. № 1. P. 40.
  5. Антропов А.П., Зайцев Н.К., Рябков Е.Д. и др. // Тонкие химические технологин. 2021. Т. 16. № 2. С. 105.
  6. Franklin A.D., Luisier M., Han S.J. et al. // Nano Lett. 2012. V. 12. № 2. P. 758.
  7. Hills G., Lau C., Wright A. et al. // Nature. 2019. V. 572. № 7771. P. 595.
  8. Zhang Y.L., Li J., To S. et al. // Nanotechnology. 2012. V. 23. P. 1063.
  9. Budhia H., Kreith F. // Int. J. Heat Mass Transf. 1973. V. 16. № 1. P. 195.
  10. Chang J., Sakai T., Saka H. // Philos. Magazine Lett. 2005. V. 85. № 5. P. 247.
  11. Ko W.S., Grabowski B., Neugebauer J. // Phys. Rev. B. 2015. V. 92. № 13. Article No. 134107.
  12. Kartsev A.I., Lega P.V., Orlov A.P. et al. // Nanomaterials. 2022. V. 12. P. 1107.
  13. Nosé S. // J. Chem. Phys. 1984. V. 81. № 1. P. 511.
  14. Hoover W.G. // Phys. Rev. A. 1985. V. 31. № 3. P. 1695.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (36KB)
3.

Baixar (30KB)
4.

Baixar (643KB)
5.

Baixar (464KB)
6.

Baixar (613KB)
7.

Baixar (492KB)
8.

Baixar (80KB)
9.

Baixar (97KB)
10.

Baixar (109KB)
11.

Baixar (90KB)

Declaração de direitos autorais © А.И. Павлов, А.И. Карцев, В.В. Коледов, П.В. Лега, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies