Effect of crystallographic orientation on the phase transition of a finite TiNi shape memory alloy wafer.

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A simulation of a TiNi shape memory alloy plate was carried out at various crystallographic orientations using a free package for classical molecular dynamics LAMMPS. It was found that the crystallographic orientation of the plate has a significant effect on the phase transition temperature. The dependence of surface energy on temperature for crystallographic orientations (100), (110), (112), (122) was constructed. The stability of the model used was investigated, as a result of which its applicability in these calculations was confirmed.

About the authors

A. I. Pavlov

Bauman Moscow State Technical University

Email: Alex.pav.2001@yandex.ru
Moscow, 105005, Russia

A. I. Kartsev

RUDN University; Computational Center of Far East branch Russian Academy of Sciences

Email: Alex.pav.2001@yandex.ru
Moscow, 117198, Russia; Khabarovsk, 680000, Russia

V. V. Koledov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Email: Alex.pav.2001@yandex.ru
Moscow, 125009 Russia

P. V. Lega

RUDN University; Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Author for correspondence.
Email: Alex.pav.2001@yandex.ru
Moscow, 117198, Russia; Moscow, 125009 Russia

References

  1. Трусов С.Н., Чернявские А.Г. // ЖТФ. 1996. Т. 66. № 11. С. 153.
  2. Лохов В.А., Кучумов А.Г. // Рос. журн. биомеханики. 2006. № 3. С. 41.
  3. Aviram A., Ratner M.A. // Chem. Phys. Lett. 1974. V. 29. № 2. P. 277.
  4. Chernozatonskii L.A., Kosakovskaja Z.J., Fedorov E.A., Panov V.I. // Phys. Lett. A. 1995. V. 197. № 1. P. 40.
  5. Антропов А.П., Зайцев Н.К., Рябков Е.Д. и др. // Тонкие химические технологин. 2021. Т. 16. № 2. С. 105.
  6. Franklin A.D., Luisier M., Han S.J. et al. // Nano Lett. 2012. V. 12. № 2. P. 758.
  7. Hills G., Lau C., Wright A. et al. // Nature. 2019. V. 572. № 7771. P. 595.
  8. Zhang Y.L., Li J., To S. et al. // Nanotechnology. 2012. V. 23. P. 1063.
  9. Budhia H., Kreith F. // Int. J. Heat Mass Transf. 1973. V. 16. № 1. P. 195.
  10. Chang J., Sakai T., Saka H. // Philos. Magazine Lett. 2005. V. 85. № 5. P. 247.
  11. Ko W.S., Grabowski B., Neugebauer J. // Phys. Rev. B. 2015. V. 92. № 13. Article No. 134107.
  12. Kartsev A.I., Lega P.V., Orlov A.P. et al. // Nanomaterials. 2022. V. 12. P. 1107.
  13. Nosé S. // J. Chem. Phys. 1984. V. 81. № 1. P. 511.
  14. Hoover W.G. // Phys. Rev. A. 1985. V. 31. № 3. P. 1695.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (36KB)
3.

Download (30KB)
4.

Download (643KB)
5.

Download (464KB)
6.

Download (613KB)
7.

Download (492KB)
8.

Download (80KB)
9.

Download (97KB)
10.

Download (109KB)
11.

Download (90KB)

Copyright (c) 2023 А.И. Павлов, А.И. Карцев, В.В. Коледов, П.В. Лега

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies