3D Numerical Model of the Envelope of a Hot Exoplanet Based on Spherical Coordinates

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A new 3D parallel numerical code in spherical coordinates has been developed to study the stellar wind flow around hot Jupiter. The peculiarity of the spherical coordinate system in the vicinity of the poles is overcome by using a ternary spherical grid, which is a composite grid consisting of three separate sectors. The numerical model of multicomponent magnetohydrodynamics, developed earlier for Cartesian coordinates, has been transferred to the new model. The results of a numerical calculation of the structure of an extended envelope of a quasi-open type for the case of a super-Alfvenian flow around a hot Jupiter are presented. We showed that the spatial resolution of the grid is sufficient for a self-consistent calculation of the structure of the atmosphere of a hot Jupiter. This allows further use of the new model for 3D aeronomic calculations.

作者简介

A. Zhilkin

Institute of Astronomy, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: zhilkin@inasan.ru
119017, Moscow, Russia

参考

  1. D. V. Bisikalo, V. I. Shematovich, P. V. Kaygorodov, and A. G. Zhilkin, Physics Uspekhi 64(8), 747 (2021).
  2. D. V. Bisikalo, V. I. Shematovich, P. V. Kaigorodov, and A. G. Zhilkin, Gaseous Envelopes of Exoplanets – Hot Jupiters (Moscow: Nauka, 2020) [in Russian].
  3. M. Mayor and D. Queloz, Nature 378, 355 (1995).
  4. D. Lai, C. Helling, and E. P. J. van den Heuvel, Astrophys. J. 721, 923 (2010).
  5. S.-L. Li, N. Miller, D. N. C. Lin, and J. J. Fortney, Nature 463, 1054 (2010).
  6. A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Desert, G. E. Ballester, et al., Nature 422, 143 (2003).
  7. Vidal-Madjar, J.-M. Desert, A. Lecavelier des Etangs, G. Hebrard, et al., Astrophys. J. 604, L69 (2004).
  8. L. Ben-Jaffel, Astrophys. J. 671, L61 (2007).
  9. A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Desert, G. E. Ballester, et al., Astrophys. J. 676, L57 (2008).
  10. L. Ben-Jaffel and S. Sona Hosseini, Astrophys. J. 709, 1284 (2010).
  11. J. L. Linsky, H. Yang, K. France, C. S. Froning, et al., Astrophys. J. 717, 1291 (2010).
  12. A. Lecavelier des Etangs, V. Bourrier, P. J. Wheatley, H. Dupuy, et al., Astron. and Astrophys. 543, id. L4 (2012).
  13. R. V. Yelle, Icarus 170, 167 (2004).
  14. A. Garcia Munoz, Planet. Space Sci. 55, 1426 (2007).
  15. R. A. Murray-Clay, E. I. Chiang, and N. Murray, Astrophys. J. 693, 23 (2009).
  16. T. T. Koskinen, M. J. Harris, R. V. Yelle, and P. Lavvas, Icarus 226, 1678 (2013).
  17. D. E. Ionov, V. I. Shematovich, and Ya. N. Pavlyuchenkov, Astron. Rep. 61, 387 (2017).
  18. D. V. Bisikalo, P. V. Kaigorodov, D. E. Ionov, and V. I. Shematovich, Astron. Rep. 57, 715 (2013).
  19. A. A. Cherenkov, D. V. Bisikalo, and P. V. Kaigorodov, Astron. Rep. 58, 679 (2014).
  20. D. V. Bisikalo and A. A. Cherenkov, Astron. Rep. 60, 183 (2016).
  21. A. Cherenkov, D. Bisikalo, L. Fossati, and C. Möstl, Astrophys. J. 846, 31 (2017).
  22. A. A. Cherenkov, D. V. Bisikalo, and A. G. Kosovichev, Monthly Not. Roy. Astron. Soc. 475, 605 (2018).
  23. D. V. Bisikalo, A. A. Cherenkov, V. I. Shematovich, L. Fossati, and C. Möstl, Astron. Rep. 62, 648 (2018).
  24. I. F. Shaikhislamov, M. L. Khodachenko, H. Lammer, K. G. Kislyakova, et al., Astrophys. J. 832, 173 (2016).
  25. M. L. Khodachenko, I. F. Shaikhislamov, H. Lammer, K. G. Kislyakova, et al., Astrophys. J. 847, 126 (2017).
  26. I. F. Shaikhislamov, M. L. Khodachenko, H. Lammer, A. G. Berezutsky, I. B. Miroshnichenko, and M. S. Rumenskikh, Monthly Not. Roy. Astron. Soc. 481, 5315 (2018).
  27. M. L. Khodachenko, I. F. Shaikhislamov, H. Lammer, A. G. Berezutsky, I. B. Miroshnichenko, M. S. Rumenskikh, K. G. Kislyakova, and N. K. Dwivedi, Astrophys. J. 885, 67 (2019).
  28. I. F. Shaikhislamov, M. L. Khodachenko, H. Lammer, A. G. Berezutsky, I. B. Miroshnichenko, and M. S. Rumenskikh, Monthly Not. Roy. Astron. Soc. 491, 3435 (2020).
  29. K. G. Kislyakova, M. Holmström, H. Lammer, P. Odert, and M. L. Khodachenko, Science 346, 981 (2014).
  30. T. T. Koskinen, J. Y.-K. Cho, N. Achilleos, and A. D. Aylward, Astrophys. J. 722, 178 (2010).
  31. T. T. Koskinen, R. V. Yelle, P. Lavvas, and N. K. Lewis, Astrophys. J. 723, 116 (2010).
  32. G. B. Trammell, P. Arras, and Z.-Y. Li, Astrophys. J. 728, id. 152 (2011).
  33. I. F. Shaikhislamov, M. L. Khodachenko, Y. L. Sasunov, H. Lammer, et al., Astrophys. J. 795, 132 (2014).
  34. M. L. Khodachenko, I. F. Shaikhislamov, H. Lammer, and P. A. Prokhopov, Astrophys. J. 813, 50 (2015).
  35. G. B. Trammell, Z.-Y. Li, and P. Arras, Astrophys. J. 788, id. 161 (2014).
  36. T. Matsakos, A. Uribe, and A. Königl, Astron. and Astrophys. 578, id. A6 (2015).
  37. M. L. Khodachenko, I. F. Shaikhislamov, H. Lammer, I. B. Miroshnichenko, M. S. Rumenskikh, A. G. Berezutsky, and L. Fossati, Monthly Not. Roy. Astron. Soc. 507, 3626 (2021).
  38. A. S. Arakcheev, A. G. Zhilkin, P. V. Kaigorodov, D. V. Bi-sikalo, and A. G. Kosovichev, Astron. Rep. 61, 932 (2017).
  39. D. V. Bisikalo, A. S. Arakcheev, and P. V. Kaigorodov, Astron. Rep. 61, 925 (2017).
  40. A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 63, 550 (2019).
  41. A. G. Zhilkin, D. V. Bisikalo, and P. V. Kaygorodov, Astron. Rep. 64, 159 (2020).
  42. A. G. Zhilkin, D. V. Bisikalo, and P. V. Kaygorodov, Astron. Rep. 64, 259 (2020).
  43. A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 64, 563 (2020).
  44. A. G. Zhilkin, D. V. Bisikalo, and E. A. Kolymagina, Astron. Rep. 65, 676 (2021).
  45. А. Г. Жилкин, Д. В. Бисикало, Астрон. журн. 99, 970 (2022).
  46. A. G. Zhilkin and D. V. Bisikalo, Universe 7, 422 (2021).
  47. C. Ronchi, R. Iacono, and P. S. Paolucci, J. Comput. Phys. 124, 93 (1996).
  48. V. Koldoba, M. M. Romanova, G. V. Ustyugova, and R. V. E. Lovelace, Astrophys. J. 576, L53 (2002).
  49. L. Ivan, H. De Sterck, S. A. Northrup, and C. P. T. Groth, J. Comput. Phys. 255, 205 (2013).
  50. G. Chesshire and W. D. Henshaw, J. Comput. Phys. 90, 1 (1990).
  51. A. V. Usmanov, M. L. Goldstein, and W. H. Matthaeus, Astrophys. J. 754, id. 40 (2012).
  52. A. Kageyama and T. Sato, Geochemistry, Geophysics, Geosystems 5, 9005 (2004).
  53. X. S. Feng, L. P. Yang, C. Q. Xiang, S. T. Wu, Y. Zhou, and D. Zhong, Astrophys. J. 723, 300 (2010).
  54. X. Feng, M. Zhang, and Y. Zhou, Astrophys. J. Suppl. 214, id. 6 (2014).
  55. D. V. Bisikalo, A. G. Zhilkin, and A. A. Boyarchuk, Gas Dynamics of Close Binary Stars (Moscow: Fizmatlit, 2013) [in Russian].
  56. A. G. Zhilkin, D. V. Bisikalo, and A. A. Boyarchuk, Physics Uspekhi 55, 115 (2012).
  57. T. Tanaka, J. Comput. Phys. 111, 381 (1994).
  58. K. G. Powell, P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. de Zeeuw, J. Comput. Phys. 154, 284 (1999).
  59. A. Dedner, F. Kemm, D. Kroner, C.-D. Munz, T. Schnitzer, and M. Wesenberg, J. Comput. Phys. 175, 645 (2002).
  60. E. J. Weber and L. Davis, Jr., Astrophys. J. 148, 217 (1967).
  61. M. J. Owens and R. J. Forsyth, Liv. Rev. Solar Physics 10, 5 (2013).
  62. U. Ziegler, J. Comput. Phys. 230, 1035 (2011).
  63. А. Г. Жилкин, А. В. Соболев, Д. В. Бисикало, М. М. Габдеев, Астрон. журн. 96(9), 748 (2019).

补充文件

附件文件
动作
1. JATS XML
2.

下载 (1015KB)
3.

下载 (25KB)
4.

下载 (1MB)
5.

下载 (2MB)
6.

下载 (85KB)
7.

下载 (87KB)
8.

下载 (1MB)

版权所有 © А.Г. Жилкин, 2023

##common.cookie##