3D Numerical Model of the Envelope of a Hot Exoplanet Based on Spherical Coordinates

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A new 3D parallel numerical code in spherical coordinates has been developed to study the stellar wind flow around hot Jupiter. The peculiarity of the spherical coordinate system in the vicinity of the poles is overcome by using a ternary spherical grid, which is a composite grid consisting of three separate sectors. The numerical model of multicomponent magnetohydrodynamics, developed earlier for Cartesian coordinates, has been transferred to the new model. The results of a numerical calculation of the structure of an extended envelope of a quasi-open type for the case of a super-Alfvenian flow around a hot Jupiter are presented. We showed that the spatial resolution of the grid is sufficient for a self-consistent calculation of the structure of the atmosphere of a hot Jupiter. This allows further use of the new model for 3D aeronomic calculations.

Sobre autores

A. Zhilkin

Institute of Astronomy, Russian Academy of Sciences

Autor responsável pela correspondência
Email: zhilkin@inasan.ru
119017, Moscow, Russia

Bibliografia

  1. D. V. Bisikalo, V. I. Shematovich, P. V. Kaygorodov, and A. G. Zhilkin, Physics Uspekhi 64(8), 747 (2021).
  2. D. V. Bisikalo, V. I. Shematovich, P. V. Kaigorodov, and A. G. Zhilkin, Gaseous Envelopes of Exoplanets – Hot Jupiters (Moscow: Nauka, 2020) [in Russian].
  3. M. Mayor and D. Queloz, Nature 378, 355 (1995).
  4. D. Lai, C. Helling, and E. P. J. van den Heuvel, Astrophys. J. 721, 923 (2010).
  5. S.-L. Li, N. Miller, D. N. C. Lin, and J. J. Fortney, Nature 463, 1054 (2010).
  6. A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Desert, G. E. Ballester, et al., Nature 422, 143 (2003).
  7. Vidal-Madjar, J.-M. Desert, A. Lecavelier des Etangs, G. Hebrard, et al., Astrophys. J. 604, L69 (2004).
  8. L. Ben-Jaffel, Astrophys. J. 671, L61 (2007).
  9. A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Desert, G. E. Ballester, et al., Astrophys. J. 676, L57 (2008).
  10. L. Ben-Jaffel and S. Sona Hosseini, Astrophys. J. 709, 1284 (2010).
  11. J. L. Linsky, H. Yang, K. France, C. S. Froning, et al., Astrophys. J. 717, 1291 (2010).
  12. A. Lecavelier des Etangs, V. Bourrier, P. J. Wheatley, H. Dupuy, et al., Astron. and Astrophys. 543, id. L4 (2012).
  13. R. V. Yelle, Icarus 170, 167 (2004).
  14. A. Garcia Munoz, Planet. Space Sci. 55, 1426 (2007).
  15. R. A. Murray-Clay, E. I. Chiang, and N. Murray, Astrophys. J. 693, 23 (2009).
  16. T. T. Koskinen, M. J. Harris, R. V. Yelle, and P. Lavvas, Icarus 226, 1678 (2013).
  17. D. E. Ionov, V. I. Shematovich, and Ya. N. Pavlyuchenkov, Astron. Rep. 61, 387 (2017).
  18. D. V. Bisikalo, P. V. Kaigorodov, D. E. Ionov, and V. I. Shematovich, Astron. Rep. 57, 715 (2013).
  19. A. A. Cherenkov, D. V. Bisikalo, and P. V. Kaigorodov, Astron. Rep. 58, 679 (2014).
  20. D. V. Bisikalo and A. A. Cherenkov, Astron. Rep. 60, 183 (2016).
  21. A. Cherenkov, D. Bisikalo, L. Fossati, and C. Möstl, Astrophys. J. 846, 31 (2017).
  22. A. A. Cherenkov, D. V. Bisikalo, and A. G. Kosovichev, Monthly Not. Roy. Astron. Soc. 475, 605 (2018).
  23. D. V. Bisikalo, A. A. Cherenkov, V. I. Shematovich, L. Fossati, and C. Möstl, Astron. Rep. 62, 648 (2018).
  24. I. F. Shaikhislamov, M. L. Khodachenko, H. Lammer, K. G. Kislyakova, et al., Astrophys. J. 832, 173 (2016).
  25. M. L. Khodachenko, I. F. Shaikhislamov, H. Lammer, K. G. Kislyakova, et al., Astrophys. J. 847, 126 (2017).
  26. I. F. Shaikhislamov, M. L. Khodachenko, H. Lammer, A. G. Berezutsky, I. B. Miroshnichenko, and M. S. Rumenskikh, Monthly Not. Roy. Astron. Soc. 481, 5315 (2018).
  27. M. L. Khodachenko, I. F. Shaikhislamov, H. Lammer, A. G. Berezutsky, I. B. Miroshnichenko, M. S. Rumenskikh, K. G. Kislyakova, and N. K. Dwivedi, Astrophys. J. 885, 67 (2019).
  28. I. F. Shaikhislamov, M. L. Khodachenko, H. Lammer, A. G. Berezutsky, I. B. Miroshnichenko, and M. S. Rumenskikh, Monthly Not. Roy. Astron. Soc. 491, 3435 (2020).
  29. K. G. Kislyakova, M. Holmström, H. Lammer, P. Odert, and M. L. Khodachenko, Science 346, 981 (2014).
  30. T. T. Koskinen, J. Y.-K. Cho, N. Achilleos, and A. D. Aylward, Astrophys. J. 722, 178 (2010).
  31. T. T. Koskinen, R. V. Yelle, P. Lavvas, and N. K. Lewis, Astrophys. J. 723, 116 (2010).
  32. G. B. Trammell, P. Arras, and Z.-Y. Li, Astrophys. J. 728, id. 152 (2011).
  33. I. F. Shaikhislamov, M. L. Khodachenko, Y. L. Sasunov, H. Lammer, et al., Astrophys. J. 795, 132 (2014).
  34. M. L. Khodachenko, I. F. Shaikhislamov, H. Lammer, and P. A. Prokhopov, Astrophys. J. 813, 50 (2015).
  35. G. B. Trammell, Z.-Y. Li, and P. Arras, Astrophys. J. 788, id. 161 (2014).
  36. T. Matsakos, A. Uribe, and A. Königl, Astron. and Astrophys. 578, id. A6 (2015).
  37. M. L. Khodachenko, I. F. Shaikhislamov, H. Lammer, I. B. Miroshnichenko, M. S. Rumenskikh, A. G. Berezutsky, and L. Fossati, Monthly Not. Roy. Astron. Soc. 507, 3626 (2021).
  38. A. S. Arakcheev, A. G. Zhilkin, P. V. Kaigorodov, D. V. Bi-sikalo, and A. G. Kosovichev, Astron. Rep. 61, 932 (2017).
  39. D. V. Bisikalo, A. S. Arakcheev, and P. V. Kaigorodov, Astron. Rep. 61, 925 (2017).
  40. A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 63, 550 (2019).
  41. A. G. Zhilkin, D. V. Bisikalo, and P. V. Kaygorodov, Astron. Rep. 64, 159 (2020).
  42. A. G. Zhilkin, D. V. Bisikalo, and P. V. Kaygorodov, Astron. Rep. 64, 259 (2020).
  43. A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 64, 563 (2020).
  44. A. G. Zhilkin, D. V. Bisikalo, and E. A. Kolymagina, Astron. Rep. 65, 676 (2021).
  45. А. Г. Жилкин, Д. В. Бисикало, Астрон. журн. 99, 970 (2022).
  46. A. G. Zhilkin and D. V. Bisikalo, Universe 7, 422 (2021).
  47. C. Ronchi, R. Iacono, and P. S. Paolucci, J. Comput. Phys. 124, 93 (1996).
  48. V. Koldoba, M. M. Romanova, G. V. Ustyugova, and R. V. E. Lovelace, Astrophys. J. 576, L53 (2002).
  49. L. Ivan, H. De Sterck, S. A. Northrup, and C. P. T. Groth, J. Comput. Phys. 255, 205 (2013).
  50. G. Chesshire and W. D. Henshaw, J. Comput. Phys. 90, 1 (1990).
  51. A. V. Usmanov, M. L. Goldstein, and W. H. Matthaeus, Astrophys. J. 754, id. 40 (2012).
  52. A. Kageyama and T. Sato, Geochemistry, Geophysics, Geosystems 5, 9005 (2004).
  53. X. S. Feng, L. P. Yang, C. Q. Xiang, S. T. Wu, Y. Zhou, and D. Zhong, Astrophys. J. 723, 300 (2010).
  54. X. Feng, M. Zhang, and Y. Zhou, Astrophys. J. Suppl. 214, id. 6 (2014).
  55. D. V. Bisikalo, A. G. Zhilkin, and A. A. Boyarchuk, Gas Dynamics of Close Binary Stars (Moscow: Fizmatlit, 2013) [in Russian].
  56. A. G. Zhilkin, D. V. Bisikalo, and A. A. Boyarchuk, Physics Uspekhi 55, 115 (2012).
  57. T. Tanaka, J. Comput. Phys. 111, 381 (1994).
  58. K. G. Powell, P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. de Zeeuw, J. Comput. Phys. 154, 284 (1999).
  59. A. Dedner, F. Kemm, D. Kroner, C.-D. Munz, T. Schnitzer, and M. Wesenberg, J. Comput. Phys. 175, 645 (2002).
  60. E. J. Weber and L. Davis, Jr., Astrophys. J. 148, 217 (1967).
  61. M. J. Owens and R. J. Forsyth, Liv. Rev. Solar Physics 10, 5 (2013).
  62. U. Ziegler, J. Comput. Phys. 230, 1035 (2011).
  63. А. Г. Жилкин, А. В. Соболев, Д. В. Бисикало, М. М. Габдеев, Астрон. журн. 96(9), 748 (2019).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1015KB)
3.

Baixar (25KB)
4.

Baixar (1MB)
5.

Baixar (2MB)
6.

Baixar (85KB)
7.

Baixar (87KB)
8.

Baixar (1MB)

Declaração de direitos autorais © А.Г. Жилкин, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies