3D Numerical Model of the Envelope of a Hot Exoplanet Based on Spherical Coordinates

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A new 3D parallel numerical code in spherical coordinates has been developed to study the stellar wind flow around hot Jupiter. The peculiarity of the spherical coordinate system in the vicinity of the poles is overcome by using a ternary spherical grid, which is a composite grid consisting of three separate sectors. The numerical model of multicomponent magnetohydrodynamics, developed earlier for Cartesian coordinates, has been transferred to the new model. The results of a numerical calculation of the structure of an extended envelope of a quasi-open type for the case of a super-Alfvenian flow around a hot Jupiter are presented. We showed that the spatial resolution of the grid is sufficient for a self-consistent calculation of the structure of the atmosphere of a hot Jupiter. This allows further use of the new model for 3D aeronomic calculations.

Авторлар туралы

A. Zhilkin

Institute of Astronomy, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: zhilkin@inasan.ru
119017, Moscow, Russia

Әдебиет тізімі

  1. D. V. Bisikalo, V. I. Shematovich, P. V. Kaygorodov, and A. G. Zhilkin, Physics Uspekhi 64(8), 747 (2021).
  2. D. V. Bisikalo, V. I. Shematovich, P. V. Kaigorodov, and A. G. Zhilkin, Gaseous Envelopes of Exoplanets – Hot Jupiters (Moscow: Nauka, 2020) [in Russian].
  3. M. Mayor and D. Queloz, Nature 378, 355 (1995).
  4. D. Lai, C. Helling, and E. P. J. van den Heuvel, Astrophys. J. 721, 923 (2010).
  5. S.-L. Li, N. Miller, D. N. C. Lin, and J. J. Fortney, Nature 463, 1054 (2010).
  6. A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Desert, G. E. Ballester, et al., Nature 422, 143 (2003).
  7. Vidal-Madjar, J.-M. Desert, A. Lecavelier des Etangs, G. Hebrard, et al., Astrophys. J. 604, L69 (2004).
  8. L. Ben-Jaffel, Astrophys. J. 671, L61 (2007).
  9. A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Desert, G. E. Ballester, et al., Astrophys. J. 676, L57 (2008).
  10. L. Ben-Jaffel and S. Sona Hosseini, Astrophys. J. 709, 1284 (2010).
  11. J. L. Linsky, H. Yang, K. France, C. S. Froning, et al., Astrophys. J. 717, 1291 (2010).
  12. A. Lecavelier des Etangs, V. Bourrier, P. J. Wheatley, H. Dupuy, et al., Astron. and Astrophys. 543, id. L4 (2012).
  13. R. V. Yelle, Icarus 170, 167 (2004).
  14. A. Garcia Munoz, Planet. Space Sci. 55, 1426 (2007).
  15. R. A. Murray-Clay, E. I. Chiang, and N. Murray, Astrophys. J. 693, 23 (2009).
  16. T. T. Koskinen, M. J. Harris, R. V. Yelle, and P. Lavvas, Icarus 226, 1678 (2013).
  17. D. E. Ionov, V. I. Shematovich, and Ya. N. Pavlyuchenkov, Astron. Rep. 61, 387 (2017).
  18. D. V. Bisikalo, P. V. Kaigorodov, D. E. Ionov, and V. I. Shematovich, Astron. Rep. 57, 715 (2013).
  19. A. A. Cherenkov, D. V. Bisikalo, and P. V. Kaigorodov, Astron. Rep. 58, 679 (2014).
  20. D. V. Bisikalo and A. A. Cherenkov, Astron. Rep. 60, 183 (2016).
  21. A. Cherenkov, D. Bisikalo, L. Fossati, and C. Möstl, Astrophys. J. 846, 31 (2017).
  22. A. A. Cherenkov, D. V. Bisikalo, and A. G. Kosovichev, Monthly Not. Roy. Astron. Soc. 475, 605 (2018).
  23. D. V. Bisikalo, A. A. Cherenkov, V. I. Shematovich, L. Fossati, and C. Möstl, Astron. Rep. 62, 648 (2018).
  24. I. F. Shaikhislamov, M. L. Khodachenko, H. Lammer, K. G. Kislyakova, et al., Astrophys. J. 832, 173 (2016).
  25. M. L. Khodachenko, I. F. Shaikhislamov, H. Lammer, K. G. Kislyakova, et al., Astrophys. J. 847, 126 (2017).
  26. I. F. Shaikhislamov, M. L. Khodachenko, H. Lammer, A. G. Berezutsky, I. B. Miroshnichenko, and M. S. Rumenskikh, Monthly Not. Roy. Astron. Soc. 481, 5315 (2018).
  27. M. L. Khodachenko, I. F. Shaikhislamov, H. Lammer, A. G. Berezutsky, I. B. Miroshnichenko, M. S. Rumenskikh, K. G. Kislyakova, and N. K. Dwivedi, Astrophys. J. 885, 67 (2019).
  28. I. F. Shaikhislamov, M. L. Khodachenko, H. Lammer, A. G. Berezutsky, I. B. Miroshnichenko, and M. S. Rumenskikh, Monthly Not. Roy. Astron. Soc. 491, 3435 (2020).
  29. K. G. Kislyakova, M. Holmström, H. Lammer, P. Odert, and M. L. Khodachenko, Science 346, 981 (2014).
  30. T. T. Koskinen, J. Y.-K. Cho, N. Achilleos, and A. D. Aylward, Astrophys. J. 722, 178 (2010).
  31. T. T. Koskinen, R. V. Yelle, P. Lavvas, and N. K. Lewis, Astrophys. J. 723, 116 (2010).
  32. G. B. Trammell, P. Arras, and Z.-Y. Li, Astrophys. J. 728, id. 152 (2011).
  33. I. F. Shaikhislamov, M. L. Khodachenko, Y. L. Sasunov, H. Lammer, et al., Astrophys. J. 795, 132 (2014).
  34. M. L. Khodachenko, I. F. Shaikhislamov, H. Lammer, and P. A. Prokhopov, Astrophys. J. 813, 50 (2015).
  35. G. B. Trammell, Z.-Y. Li, and P. Arras, Astrophys. J. 788, id. 161 (2014).
  36. T. Matsakos, A. Uribe, and A. Königl, Astron. and Astrophys. 578, id. A6 (2015).
  37. M. L. Khodachenko, I. F. Shaikhislamov, H. Lammer, I. B. Miroshnichenko, M. S. Rumenskikh, A. G. Berezutsky, and L. Fossati, Monthly Not. Roy. Astron. Soc. 507, 3626 (2021).
  38. A. S. Arakcheev, A. G. Zhilkin, P. V. Kaigorodov, D. V. Bi-sikalo, and A. G. Kosovichev, Astron. Rep. 61, 932 (2017).
  39. D. V. Bisikalo, A. S. Arakcheev, and P. V. Kaigorodov, Astron. Rep. 61, 925 (2017).
  40. A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 63, 550 (2019).
  41. A. G. Zhilkin, D. V. Bisikalo, and P. V. Kaygorodov, Astron. Rep. 64, 159 (2020).
  42. A. G. Zhilkin, D. V. Bisikalo, and P. V. Kaygorodov, Astron. Rep. 64, 259 (2020).
  43. A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 64, 563 (2020).
  44. A. G. Zhilkin, D. V. Bisikalo, and E. A. Kolymagina, Astron. Rep. 65, 676 (2021).
  45. А. Г. Жилкин, Д. В. Бисикало, Астрон. журн. 99, 970 (2022).
  46. A. G. Zhilkin and D. V. Bisikalo, Universe 7, 422 (2021).
  47. C. Ronchi, R. Iacono, and P. S. Paolucci, J. Comput. Phys. 124, 93 (1996).
  48. V. Koldoba, M. M. Romanova, G. V. Ustyugova, and R. V. E. Lovelace, Astrophys. J. 576, L53 (2002).
  49. L. Ivan, H. De Sterck, S. A. Northrup, and C. P. T. Groth, J. Comput. Phys. 255, 205 (2013).
  50. G. Chesshire and W. D. Henshaw, J. Comput. Phys. 90, 1 (1990).
  51. A. V. Usmanov, M. L. Goldstein, and W. H. Matthaeus, Astrophys. J. 754, id. 40 (2012).
  52. A. Kageyama and T. Sato, Geochemistry, Geophysics, Geosystems 5, 9005 (2004).
  53. X. S. Feng, L. P. Yang, C. Q. Xiang, S. T. Wu, Y. Zhou, and D. Zhong, Astrophys. J. 723, 300 (2010).
  54. X. Feng, M. Zhang, and Y. Zhou, Astrophys. J. Suppl. 214, id. 6 (2014).
  55. D. V. Bisikalo, A. G. Zhilkin, and A. A. Boyarchuk, Gas Dynamics of Close Binary Stars (Moscow: Fizmatlit, 2013) [in Russian].
  56. A. G. Zhilkin, D. V. Bisikalo, and A. A. Boyarchuk, Physics Uspekhi 55, 115 (2012).
  57. T. Tanaka, J. Comput. Phys. 111, 381 (1994).
  58. K. G. Powell, P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. de Zeeuw, J. Comput. Phys. 154, 284 (1999).
  59. A. Dedner, F. Kemm, D. Kroner, C.-D. Munz, T. Schnitzer, and M. Wesenberg, J. Comput. Phys. 175, 645 (2002).
  60. E. J. Weber and L. Davis, Jr., Astrophys. J. 148, 217 (1967).
  61. M. J. Owens and R. J. Forsyth, Liv. Rev. Solar Physics 10, 5 (2013).
  62. U. Ziegler, J. Comput. Phys. 230, 1035 (2011).
  63. А. Г. Жилкин, А. В. Соболев, Д. В. Бисикало, М. М. Габдеев, Астрон. журн. 96(9), 748 (2019).

Қосымша файлдар


© А.Г. Жилкин, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>