Integral Cayley Graphs
- Autores: Guo W.1, Lytkina D.V.2,3, Mazurov V.D.4, Revin D.O.1,3,4
-
Afiliações:
- University of Science and Technology of China
- Siberian State University of Telecommunications and Information Sciences
- Novosibirsk State University
- Sobolev Institute of Mathematics
- Edição: Volume 58, Nº 4 (2019)
- Páginas: 297-305
- Seção: Article
- URL: https://journals.rcsi.science/0002-5232/article/view/234145
- DOI: https://doi.org/10.1007/s10469-019-09550-2
- ID: 234145
Citar
Resumo
Let G be a group and S ⊆ G a subset such that S = S−1, where S−1 = {s−1 | s ∈ S}. Then a Cayley graph Cay(G, S) is an undirected graph Γ with vertex set V (Γ) = G and edge set E(Γ) = {(g, gs) | g ∈ G, s ∈ S}. For a normal subset S of a finite group G such that s ∈ S ⇒ sk ∈ S for every k ∈ ℤ which is coprime to the order of s, we prove that all eigenvalues of the adjacency matrix of Cay(G, S) are integers. Using this fact, we give affirmative answers to Questions 19.50(a) and 19.50(b) in the Kourovka Notebook.
Sobre autores
W. Guo
University of Science and Technology of China
Autor responsável pela correspondência
Email: wguo@ustc.edu.cn
República Popular da China, Hefei, 230026
D. Lytkina
Siberian State University of Telecommunications and Information Sciences; Novosibirsk State University
Email: wguo@ustc.edu.cn
Rússia, ul. Kirova 86, Novosibirsk, 630102; ul. Pirogova 1, Novosibirsk, 630090
V. Mazurov
Sobolev Institute of Mathematics
Email: wguo@ustc.edu.cn
Rússia, pr. Akad. Koptyuga 4, Novosibirsk, 630090
D. Revin
University of Science and Technology of China; Novosibirsk State University; Sobolev Institute of Mathematics
Email: wguo@ustc.edu.cn
República Popular da China, Hefei, 230026; ul. Pirogova 1, Novosibirsk, 630090; pr. Akad. Koptyuga 4, Novosibirsk, 630090
Arquivos suplementares
