Integral Cayley Graphs


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Let G be a group and SG a subset such that S = S−1, where S−1 = {s−1 | sS}. Then a Cayley graph Cay(G, S) is an undirected graph Γ with vertex set V (Γ) = G and edge set E(Γ) = {(g, gs) | g ∈ G, sS}. For a normal subset S of a finite group G such that sSskS for every k ∈ ℤ which is coprime to the order of s, we prove that all eigenvalues of the adjacency matrix of Cay(G, S) are integers. Using this fact, we give affirmative answers to Questions 19.50(a) and 19.50(b) in the Kourovka Notebook.

Sobre autores

W. Guo

University of Science and Technology of China

Autor responsável pela correspondência
Email: wguo@ustc.edu.cn
República Popular da China, Hefei, 230026

D. Lytkina

Siberian State University of Telecommunications and Information Sciences; Novosibirsk State University

Email: wguo@ustc.edu.cn
Rússia, ul. Kirova 86, Novosibirsk, 630102; ul. Pirogova 1, Novosibirsk, 630090

V. Mazurov

Sobolev Institute of Mathematics

Email: wguo@ustc.edu.cn
Rússia, pr. Akad. Koptyuga 4, Novosibirsk, 630090

D. Revin

University of Science and Technology of China; Novosibirsk State University; Sobolev Institute of Mathematics

Email: wguo@ustc.edu.cn
República Popular da China, Hefei, 230026; ul. Pirogova 1, Novosibirsk, 630090; pr. Akad. Koptyuga 4, Novosibirsk, 630090

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2019