Integral Cayley Graphs


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Let G be a group and SG a subset such that S = S−1, where S−1 = {s−1 | sS}. Then a Cayley graph Cay(G, S) is an undirected graph Γ with vertex set V (Γ) = G and edge set E(Γ) = {(g, gs) | g ∈ G, sS}. For a normal subset S of a finite group G such that sSskS for every k ∈ ℤ which is coprime to the order of s, we prove that all eigenvalues of the adjacency matrix of Cay(G, S) are integers. Using this fact, we give affirmative answers to Questions 19.50(a) and 19.50(b) in the Kourovka Notebook.

Авторлар туралы

W. Guo

University of Science and Technology of China

Хат алмасуға жауапты Автор.
Email: wguo@ustc.edu.cn
ҚХР, Hefei, 230026

D. Lytkina

Siberian State University of Telecommunications and Information Sciences; Novosibirsk State University

Email: wguo@ustc.edu.cn
Ресей, ul. Kirova 86, Novosibirsk, 630102; ul. Pirogova 1, Novosibirsk, 630090

V. Mazurov

Sobolev Institute of Mathematics

Email: wguo@ustc.edu.cn
Ресей, pr. Akad. Koptyuga 4, Novosibirsk, 630090

D. Revin

University of Science and Technology of China; Novosibirsk State University; Sobolev Institute of Mathematics

Email: wguo@ustc.edu.cn
ҚХР, Hefei, 230026; ul. Pirogova 1, Novosibirsk, 630090; pr. Akad. Koptyuga 4, Novosibirsk, 630090

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019