Integral Cayley Graphs
- Авторлар: Guo W.1, Lytkina D.V.2,3, Mazurov V.D.4, Revin D.O.1,3,4
-
Мекемелер:
- University of Science and Technology of China
- Siberian State University of Telecommunications and Information Sciences
- Novosibirsk State University
- Sobolev Institute of Mathematics
- Шығарылым: Том 58, № 4 (2019)
- Беттер: 297-305
- Бөлім: Article
- URL: https://journals.rcsi.science/0002-5232/article/view/234145
- DOI: https://doi.org/10.1007/s10469-019-09550-2
- ID: 234145
Дәйексөз келтіру
Аннотация
Let G be a group and S ⊆ G a subset such that S = S−1, where S−1 = {s−1 | s ∈ S}. Then a Cayley graph Cay(G, S) is an undirected graph Γ with vertex set V (Γ) = G and edge set E(Γ) = {(g, gs) | g ∈ G, s ∈ S}. For a normal subset S of a finite group G such that s ∈ S ⇒ sk ∈ S for every k ∈ ℤ which is coprime to the order of s, we prove that all eigenvalues of the adjacency matrix of Cay(G, S) are integers. Using this fact, we give affirmative answers to Questions 19.50(a) and 19.50(b) in the Kourovka Notebook.
Авторлар туралы
W. Guo
University of Science and Technology of China
Хат алмасуға жауапты Автор.
Email: wguo@ustc.edu.cn
ҚХР, Hefei, 230026
D. Lytkina
Siberian State University of Telecommunications and Information Sciences; Novosibirsk State University
Email: wguo@ustc.edu.cn
Ресей, ul. Kirova 86, Novosibirsk, 630102; ul. Pirogova 1, Novosibirsk, 630090
V. Mazurov
Sobolev Institute of Mathematics
Email: wguo@ustc.edu.cn
Ресей, pr. Akad. Koptyuga 4, Novosibirsk, 630090
D. Revin
University of Science and Technology of China; Novosibirsk State University; Sobolev Institute of Mathematics
Email: wguo@ustc.edu.cn
ҚХР, Hefei, 230026; ul. Pirogova 1, Novosibirsk, 630090; pr. Akad. Koptyuga 4, Novosibirsk, 630090
Қосымша файлдар
