Integral Cayley Graphs


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let G be a group and SG a subset such that S = S−1, where S−1 = {s−1 | sS}. Then a Cayley graph Cay(G, S) is an undirected graph Γ with vertex set V (Γ) = G and edge set E(Γ) = {(g, gs) | g ∈ G, sS}. For a normal subset S of a finite group G such that sSskS for every k ∈ ℤ which is coprime to the order of s, we prove that all eigenvalues of the adjacency matrix of Cay(G, S) are integers. Using this fact, we give affirmative answers to Questions 19.50(a) and 19.50(b) in the Kourovka Notebook.

About the authors

W. Guo

University of Science and Technology of China

Author for correspondence.
Email: wguo@ustc.edu.cn
China, Hefei, 230026

D. V. Lytkina

Siberian State University of Telecommunications and Information Sciences; Novosibirsk State University

Email: wguo@ustc.edu.cn
Russian Federation, ul. Kirova 86, Novosibirsk, 630102; ul. Pirogova 1, Novosibirsk, 630090

V. D. Mazurov

Sobolev Institute of Mathematics

Email: wguo@ustc.edu.cn
Russian Federation, pr. Akad. Koptyuga 4, Novosibirsk, 630090

D. O. Revin

University of Science and Technology of China; Novosibirsk State University; Sobolev Institute of Mathematics

Email: wguo@ustc.edu.cn
China, Hefei, 230026; ul. Pirogova 1, Novosibirsk, 630090; pr. Akad. Koptyuga 4, Novosibirsk, 630090

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Springer Science+Business Media, LLC, part of Springer Nature