Integral Cayley Graphs
- Авторы: Guo W.1, Lytkina D.V.2,3, Mazurov V.D.4, Revin D.O.1,3,4
-
Учреждения:
- University of Science and Technology of China
- Siberian State University of Telecommunications and Information Sciences
- Novosibirsk State University
- Sobolev Institute of Mathematics
- Выпуск: Том 58, № 4 (2019)
- Страницы: 297-305
- Раздел: Article
- URL: https://journals.rcsi.science/0002-5232/article/view/234145
- DOI: https://doi.org/10.1007/s10469-019-09550-2
- ID: 234145
Цитировать
Аннотация
Let G be a group and S ⊆ G a subset such that S = S−1, where S−1 = {s−1 | s ∈ S}. Then a Cayley graph Cay(G, S) is an undirected graph Γ with vertex set V (Γ) = G and edge set E(Γ) = {(g, gs) | g ∈ G, s ∈ S}. For a normal subset S of a finite group G such that s ∈ S ⇒ sk ∈ S for every k ∈ ℤ which is coprime to the order of s, we prove that all eigenvalues of the adjacency matrix of Cay(G, S) are integers. Using this fact, we give affirmative answers to Questions 19.50(a) and 19.50(b) in the Kourovka Notebook.
Об авторах
W. Guo
University of Science and Technology of China
Автор, ответственный за переписку.
Email: wguo@ustc.edu.cn
Китай, Hefei, 230026
D. Lytkina
Siberian State University of Telecommunications and Information Sciences; Novosibirsk State University
Email: wguo@ustc.edu.cn
Россия, ul. Kirova 86, Novosibirsk, 630102; ul. Pirogova 1, Novosibirsk, 630090
V. Mazurov
Sobolev Institute of Mathematics
Email: wguo@ustc.edu.cn
Россия, pr. Akad. Koptyuga 4, Novosibirsk, 630090
D. Revin
University of Science and Technology of China; Novosibirsk State University; Sobolev Institute of Mathematics
Email: wguo@ustc.edu.cn
Китай, Hefei, 230026; ul. Pirogova 1, Novosibirsk, 630090; pr. Akad. Koptyuga 4, Novosibirsk, 630090
Дополнительные файлы
