Integral Cayley Graphs
- Authors: Guo W.1, Lytkina D.V.2,3, Mazurov V.D.4, Revin D.O.1,3,4
-
Affiliations:
- University of Science and Technology of China
- Siberian State University of Telecommunications and Information Sciences
- Novosibirsk State University
- Sobolev Institute of Mathematics
- Issue: Vol 58, No 4 (2019)
- Pages: 297-305
- Section: Article
- URL: https://journals.rcsi.science/0002-5232/article/view/234145
- DOI: https://doi.org/10.1007/s10469-019-09550-2
- ID: 234145
Cite item
Abstract
Let G be a group and S ⊆ G a subset such that S = S−1, where S−1 = {s−1 | s ∈ S}. Then a Cayley graph Cay(G, S) is an undirected graph Γ with vertex set V (Γ) = G and edge set E(Γ) = {(g, gs) | g ∈ G, s ∈ S}. For a normal subset S of a finite group G such that s ∈ S ⇒ sk ∈ S for every k ∈ ℤ which is coprime to the order of s, we prove that all eigenvalues of the adjacency matrix of Cay(G, S) are integers. Using this fact, we give affirmative answers to Questions 19.50(a) and 19.50(b) in the Kourovka Notebook.
About the authors
W. Guo
University of Science and Technology of China
Author for correspondence.
Email: wguo@ustc.edu.cn
China, Hefei, 230026
D. V. Lytkina
Siberian State University of Telecommunications and Information Sciences; Novosibirsk State University
Email: wguo@ustc.edu.cn
Russian Federation, ul. Kirova 86, Novosibirsk, 630102; ul. Pirogova 1, Novosibirsk, 630090
V. D. Mazurov
Sobolev Institute of Mathematics
Email: wguo@ustc.edu.cn
Russian Federation, pr. Akad. Koptyuga 4, Novosibirsk, 630090
D. O. Revin
University of Science and Technology of China; Novosibirsk State University; Sobolev Institute of Mathematics
Email: wguo@ustc.edu.cn
China, Hefei, 230026; ul. Pirogova 1, Novosibirsk, 630090; pr. Akad. Koptyuga 4, Novosibirsk, 630090
Supplementary files
