Retinal and optic nerve functional activity after vitrectomy for vitreomacular traction syndrome

Cover Page

Cite item

Abstract

Background. Impacts of vitrectomy for vitreomacular traction syndrome on retinal and optic nerve functional activity are analyzed.

Materials and methods. The electrophysiological monitoring was carried out before vitrectomy and on Days 1, 3, 7, 14, 30, 60, 180 after surgery in 59 patients (59 eyes). Patients were divided into three groups depending on the intraocular tamponade type: the first group – air tamponade, the second group – gas (C3F8) tamponade, the third group – BSS (balanced salt solution).

Results. A significant inhibition of the functional activity of neurons of internal layers of the retina and of the optic nerve was revealed on the Day 1 after surgery compared to baseline data (р < 0.001). In groups I and III, the functional activity of inner layers of the retina and of the optic nerve restored twice as actively as that in the second group.

Conclusions. Vitrectomy causes a reversible and significant inhibition of functional activity of retina and optic nerve. The duration of vitrectomy procedure is a significant negative factor determining the degree of depression of the functional activity of inner layers of the retina and of the optic nerve in the post-op period. The gas tamponade of the vitreous cavity with perfluoropropane-air mixture, compared to air and BSS tamponades, is a significant negative factor influencing the degree of functional activity inhibition of retina and optic nerve after surgery.

About the authors

Evgeniya N. Nikolaenko

S.M. Kirov Military Medical Academy

Author for correspondence.
Email: e.n.nikolaenko@mail.ru
ORCID iD: 0000-0002-9596-5504
SPIN-code: 3517-0734
ResearcherId: I-1380-2016

Ophthalmologist, Diagnostic Department

Russian Federation, 6G, Akademika Lebedeva street, Saint-Petersburg, 194044

Alexey N. Kulikov

S.M. Kirov Military Medical Academy

Email: alexey.kulikov@mail.ru
ORCID iD: 0000-0002-5274-6993
SPIN-code: 6440-7706
Scopus Author ID: 57001225300
ResearcherId: M-2094-2016

MD, PhD, DMedSc, Professor, Head of the Department, Ophthalmology Department

Russian Federation, 6G, Akademika Lebedeva street, Saint-Petersburg, 194044

Veniamin V. Volkov

S.M. Kirov Military Medical Academy

Email: e.n.nikolaenko@mail.ru
ORCID iD: 0000-0002-1153-8418
SPIN-code: 7953-2938
Scopus Author ID: 0025348786
ResearcherId: M-3574-2016

MD, PhD, DMedSc, Professor, Professor of the Ophthalmology Department

Russian Federation, 6G, Akademika Lebedeva street, Saint-Petersburg, 194044

Vladimir F. Danilichev

S.M. Kirov Military Medical Academy

Email: e.n.nikolaenko@mail.ru
ORCID iD: 0000-0003-3315-3735
SPIN-code: 3042-7034
Scopus Author ID: 6701616945
ResearcherId: M-5592-2016

MD, PhD, DMedSc, Professor, Professor of the Ophthalmology Department

Russian Federation, 6G, Akademika Lebedeva street, Saint-Petersburg, 194044

References

  1. Либман Е.С., Калеева Э.В., Рязанов Д.П. Комплексная характеристика инвалидности вследствие офтальмологии в Российской Федерации // Российская офтальмология. – 2012. – № 5. – С. 24–26. [Libman ES, Kaleeva EV, Ryazanov DP. Kompleksnaya kharakteristika invalidnosti vsledstvie oftalmologii v Rossiyskoy Federatsii. Rossiyskaya oftalmologiya. 2012;(5): 24-26. (In Russ.)]
  2. Балашевич Л.И., Байбородов Я.В., Жоголев К.С. Хирургическое лечение патологии витреомакулярного интерфейса. Обзор литературы в вопросах и ответах // Офтальмохирургия. – 2015. – № 2. – С. 80–85. [Balashevich LI, Baiborodov JV, Zogolev KS. Surgical treatment of the vitreo-macular interface pathology. Review of the foreign literature in questions and answers. Fyodorov Journal of Ophthalmic Surgery. 2015;(2):80-85. (In Russ.)]. doi: https://doi.org/10.25276/0235-4160-2015-2-80-86.
  3. Bottos J, Elizalde J, Rodrigues EB, et al. Vitreomacular traction syndrome: postoperative functional and anatomic outcomes. Ophthalmic Surg Lasers Imaging Retina. 2015;46(2):235-242. doi: https://doi.org/10.3928/23258160-20150213-14.
  4. Kovacevic D, Markusic V. Pars plana vitrectomy for vitreomacular traction syndrome. Coll Antropol. 2013;37 Suppl 1:271-273.
  5. Николаенко Е.Н., Сосновский С.В., Куликов А.Н. Влияние продолжительности витрэктомии на угнетение биоэлектрической активности сетчатки в послеоперационном периоде // Современные технологии в офтальмологии. – 2016. – № 1. – С. 158–161. [Nikolaenko EN, Sosnovskii SV, Kulikov AN. Vliyanie prodolzhitel’nosti vitrektomii na ugnetenie bioelektricheskoy aktivnosti setchatki v posleoperatsionnom periode. Sovremennye tekhnologii v oftalmologii. 2016;(1):158-161. (In Russ.)]
  6. Li HH, Liao X, Xie CL, et al. Intraoperative risk factors associated with visual acuity outcomes of pars plana vitrectomy in idiopathic epiretinal membrane. Zhonghua Yan Ke Za Zhi. 2017;53(5):344-351. doi: https://doi.org/10.3760/cma.j.issn.0412-4081.2017.05.006.
  7. Куликов А.Н., Сосновский С.В., Николаенко Е.Н. Анализ динамики электрогенеза сетчатки и зрительного нерва после витрэктомии по поводу осложнённой хирургии катаракты // Офтальмологические ведомости. – 2018. – Т. 11. – № 3. – С. 34–47. [Nikolaenko EN, Sosnovskii SV, Kulikov AN. Analysis of retinal and optic nerve electrogenesis dynamics after vitrectomy for complicated catarct surgery. Ophthalmology journal. 2018;11(3):34-47. (In Russ.)]. doi: https://doi.org/10.17816/OV11334-47.
  8. Niwa T, Terasaki H, Kondo M, et al. Function and morphology of macula before and after removal of idiopathic epiretinal membrane. Invest Ophthalmol Vis Sci. 2003;44(4):1652-1656. doi: https://doi.org/10.1167/iovs.02-0404.
  9. Казиев С.Н., Борзенок С.А., Сабурина И.Н., и др. Эндоиллюминация в ходе витреальной хирургии — эволюция вопроса и особенности применения на современном этапе // Практическая медицина. – 2013. – № 1–3. – С. 10–12. [Kaziev SN, Borzenok SA, Saburina IN, et. al. Endoillumination in the course of vitreal surgery – history of the isssue and administration details in the modern period. Prakticheskaya meditsina. 2013;(1-3):10-12. (In Russ.)]
  10. AbdEl Dayem H, Hartzer M, Williams G, Ferrone P. The effect of vitrectomy infusion solutions on postoperative electroretinography and retina histology. BMJ Open Ophthalmol. 2017;1(1):e000004. doi: https://doi.org/10.1136/bmjophth-2016-000004.
  11. Kim NK, Kim CY, Choi MJ, et al. Effects of low-intensity ultrasound on oxidative damage in retinal pigment epithelial cells in vitro. Ultrasound Med Biol. 2015;41(5):1363-1371. doi: https://doi.org/10.1016/j.ultrasmedbio.2014.12.665.
  12. Heilweil G, Komarowska I, Zemel E, et al. Normal physiological and pathophysiological effects of trypan blue on the retinas of albino rabbits. Invest Ophthalmol Vis Sci. 2010;51(8):4187-4194. doi: https://doi.org/10.1167/iovs.09-4675.
  13. Machida S, Nishimura T, Ohzeki T, et al. Comparisons of focal macular electroretinograms after indocyanine green-, brilliant blue G-, or triamcinolone acetonide-assisted macular hole surgery. Graefes Arch Clin Exp Ophthalmol. 2016;255(3):485-492. doi: https://doi.org/10.1007/s00417-016-3478-8.
  14. Frumar KD, Gregor ZJ, Carter RM, Arden GB. Electroretinographic changes after vitrectomy and intraocular tamponade. Retina. 1985;5(1):16-21. doi: https://doi.org/10.1097/00006982-198500510-00004.
  15. Ueno S, Kondo M, Piao CH, et al. Selective amplitude reduction of the PhNR after macular hole surgery: ganglion cell damage related to ICG-assisted ILM peeling and gas tamponade. Invest Ophthalmol Vis Sci. 2006;47(8):3545-3549. doi: https://doi.org/10.1167/iovs.05-1481.
  16. Куликов А.Н. Экспериментальное изучение высокочистых жидких перфторорганических соединений при интравитреальном введении: Дис. …канд. мед. наук. – СПб., 1997. [Kulikov AN. Eksperimental’noe izuchenie vysokochistykh zhidkikh perftororganicheskikh soedineniy pri intravitreal’nom vvedenii [dissertation]. Saint Petersburg; 1997. (In Russ.)]

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Visual acuity dynamics

Download (187KB)
3. Fig. 2. Dynamics of the Р2 Flash VEP latency

Download (197KB)
4. Fig. 3. Dynamics of the relative inhibition of the Р2 Flash VEP latency

Download (191KB)
5. Fig. 4. Dynamics of the electrical sensitivity

Download (210KB)
6. Fig. 5. Dynamics of the electrical sensitivity relative inhibition

Download (218KB)
7. Fig. 6. Dynamics of the critical frequency of phosphene disappearance

Download (211KB)
8. Fig. 7. Dynamics of the relative inhibition of the of the electrical lability

Download (222KB)

Copyright (c) 2019 Nikolaenko E.N., Kulikov A.N., Volkov V.V., Danilichev V.F.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies