CARNITINE CHLORIDE EFFECT ON FUNCTIONAL STATE OF MITOCHONDRIA IN CONDITIONS OF NITRIC OXIDE SYNTHESIS DEFICIT


Cite item

Full Text

Abstract

Aim. To study the effect of carnitine chloride on functional state of mitochondria and endogenous carnitine content in conditions of L-NAME-induced decrease in nitric oxide synthesis (II). Materials and methods. Twenty four Wistar rats were divided into the following groups: the control group, the group with intraperitoneal introduction of L-NAME in the dose of 25 mg/kg for 7 days and the group receiving L-NAME by the analogous scheme against the background of introduction of carnitine chloride in the dose of 300 mg/kg for 21 days. The animals experienced the study of lactate dehydrogenase (LDG), succinate dehydrogenase (SDG), superoxide dismutase (SOD), lactate, nitric oxide (II), carnitine (total, free, bound) and nonetherified fatty acid concentrations in the rat cardiomyocyte mitochondria. Results. L-NAME in the dose of 25 mg/kg led to decrease in NO metabolite (by 21,5 %, p < 0,05) and lactate (by 56 %, p < 0,05) concentrations in myocardiocyte mitochondria; at the same time, it increased nonetherified fatty acid (by 290 %, p < 0,05) and total carnitine (by 162 %, p < 0,05) content as well as activity of all the three measured oxidoreductases in mitochondrial cardiac tissues as compared to the control animal indices (LDG by 160 %, p < 0,05; SDG by 109 %, p < 0,05; SOD by 133 %, p < 0,05). Preliminary introduction of carnitine chloride induced reliable significant growth of SDG (by 163 %, p < 0,05) and SOD (by 376 %, p < 0,05) activity, rise in NO metabolite (by 437 %, p < 0,05) and lactate (by 62 %, p < 0,05) concentrations, as well as to fall in fatty acid (37 %, p < 0,05) and total carnitine (by 35 %, p < 0,05) concentrations and LDG activity (by 50 %, p < 0,05). Conclusions. Preliminary administration of cortinine chloride in the dose of 300 mg/kg before introduction of L-NAME in the dose of 25 mg/kg normalizes carnitine homeostasis, prevents decrease in NO metabolite concentration, declines nonetherified fatty acid concentration and significantly elevates SOD and SDG activity in the rat cardiomyocyte mitochondria.

About the authors

V I Zvyagina

Рязанский государственный медицинский университет им. академика И. П. Павлова, г. Рязань, Российская Федерация

кандидат биологических наук, доцент кафедры биологической химии с курсом клинической лабораторной диагностики ФДПО

O M Uryasiev

Рязанский государственный медицинский университет им. академика И. П. Павлова, г. Рязань, Российская Федерация

доктор медицинских наук, профессор, заведующий кафедры факультетской терапии с курсами эндокринологии, клинической фармакологии, профессиональных болезней и фармакотерапии ФДПО

E S Belskikh

Рязанский государственный медицинский университет им. академика И. П. Павлова, г. Рязань, Российская Федерация

Email: ed.bels@yandex.ru
ординатор кафедры факультетской терапии с курсами эндокринологии, клинической фармакологии, профессиональных болезней и фармакотерапии ФДПО

D V Medvedev

Рязанский государственный медицинский университет им. академика И. П. Павлова, г. Рязань, Российская Федерация

ассистент кафедры биологической химии с курсом клинической лабораторной диагностики ФДПО

References

  1. Граник В. Г., Григорьев Н. Б. Оксид азота (NO). Новый путь к поиску лекарств: монография. М.: Вузовская книга 2004; 360.
  2. Дубинина Е. Е. Продукты метаболизма кислорода в функциональной активности клеток (жизнь и смерть, созидание и разрушение). Физиологические и клинико-биохимические аспекты. СПб.: Медицинская пресса 2006; 400.
  3. Копелевич В. М. Витаминоподобные соединения L-карнитин и ацетил-L-карнитин: от биохимических исследований к медицинскому применению. Укр. Бiохiм. журн. 2005; 77 (4): 30-50.
  4. Костюк В. А., Потапович А. И., Ковалева Ж. В. Простой и чувствительный метод определения активности супероксиддисмутазы, основанный на реакции окисления кверцитина. Вопросы медицинской химии 1990; 2: 88-91.
  5. Метельская В. А., Гуманова Н. Г. Скрининг-метод определения уровня метаболитов оксида азота в сыворотке. Клиническая лабораторная диагностика 2005; 6: 15-18.
  6. Методы биохимических исследований (липидный и энергетический обмен); под редакцией М. И. Прохоровой. Л.: Изд-во Ленингр. ун-та 1982; 327.
  7. Мещерякова О. В., Чурова М. В., Немова Н. Н. Митохондриальный лактат-окисляющий комплекс и его значение для поддержания энергетического гомеостаза клеток. Современные проблемы физиологии и биохимии водных организмов. Экологическая физиология и биохимия водных организмов: сборник научных статей. Петрозаводск: Карельский научный центр РАН 2014; 1: 163-172.
  8. Осипов А. Н., Борисенко Г. Г., Владимиров Ю. А. Биологическая роль нитрозильных комплексов гемпротеинов. Успехи биологической химии 2007; 47: 259-292.
  9. Покровский М. В., Покровская Т. Г., Кочкаров В. И., Артюшкова Е. Б. Эндотелиопротекторные эффекты L-аргинина при моделировании дефицита окиси азота. Экспериментальная и клиническая фармакология 2008; 71(2): 29-31.
  10. Dikalov S. Crosstalk between mitochondria and NADPH oxidases. Free Radic. Biol. Med. 2011; 51 (7): 1289-1301.
  11. Marcovina S. M., Sirtori C., Peracino A. Translating the basic knowledge of mitochondrial functions to metabolic therapy: role of L-carnitine. The journal of laboratory and clinical medicine 2012; 73-84.
  12. Michael P. Murphy How mitochondria produce reactive oxygen species. Biochem. J. 2009; 417 (1): 1-13.
  13. Rajasekar P., Palanisamy, Anuradha C. V. Increase in nitric oxide and reduction in blood pressure, protein kinase C beta II and oxidative stress by L-carnitine: a study in the fructose-fed hypertensive rat. Clin. Exp. Hypertens. 2007; 29 (8): 517-530.
  14. Sharma S., Sud N., Wiseman D. A., Carter A. L., Kumar S., Hou Y., Rau T., Wilham J., Harmon C., Oishi P. Altered carnitine homeostasis is associated with decreased mitochondrial function and altered nitric oxide signaling in lambs with pulmonary hypertension. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2008; l294: 46-56.
  15. Sharma S., Sun X., Agarwal S., Rafikov R., Dasarathy S., Kumar S., Black S. M. Role of carnitine acetyl transferase in regulation of nitric oxide signaling in pulmonary arterial endothelial. Cells. Int. J. Mol. Sci. 2013; 14 (1): 255-272.
  16. Wan L., Hubbard R. W. Rapid assay for free carnitine measurement in plasma. Clin. Chem. 1995; 41: 159.
  17. Xiaoqiang Tang, Yu-Xuan Luo, Hou-Zao Chen, De-Pei Liu. Mitochondria, endothelial cell function, and vascular diseases. Front. Physiol. 2014; 06: 175.
  18. Yugo Miyata, Iichiro Shimomura. Metabolic flexibility and carnitine flux: The role of carnitine acyltransferase in glucose homeostasis. J. Diabetes Investig. 2013; 4 (3): 247-249.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Zvyagina V.I., Uryasiev O.M., Belskikh E.S., Medvedev D.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».