Contemporary prospects for the use of sodium-glucose cotransporter-2 inhibitors
- Authors: Kondratieva A.R.1, Khazova E.A.1, Lobanova A.V.1, Sorokina Y.A.1, Mosina A.A.1, Zanozina O.V.1,2
-
Affiliations:
- Privolzhsky Research Medical University
- Nizhny Novgorod Regional Clinical Hospital named after N.A. Semashko
- Issue: Vol 41, No 6 (2024)
- Pages: 92-108
- Section: Review of literature
- URL: https://journals.rcsi.science/PMJ/article/view/284398
- DOI: https://doi.org/10.17816/pmj41692-108
- ID: 284398
Cite item
Full Text
Abstract
To determine contemporary prospects for the use of non-glycemic effects of sodium-glucose cotransporter-2 inhibitors in comorbid patients, the analysis of existing studies was carried out.
The mechanisms of action of sodium-glucose cotransporter-2 inhibitors discovered during the EMPA-REG OUTCOME study which were previously unknown, encouraged further research on the use of these drugs in other pathological conditions. The authors of the article have analyzed some clinical and preclinical studies on the use of this drug group in such conditions as stroke, cancer, rheumatological diseases, and rhythm disorders, as well as their impact on the development of major adverse cardiovascular events. The effects of oxidative stress suppression in the myocardium and nervous tissue with an increase in the number of mitochondria which reduces the risk of developing rhythm disorders, improves neoangiogenesis in the focus of ischemic necrosis, and has neuroprotective effects are described in the article. In oncological diseases, gliflozins prevent proliferation of tumor cells and oncogenesis through the induction of late apoptosis and also have cardioprotective effects in patients undergoing chemotherapy. The use of these medicines reduces the incidence of major adverse cardiovascular events, as well as restenosis after intravascular interventions. The positive effect on the course of rheumatological diseases was in improving laboratory parameters in a number of diseases and reducing the frequency of exacerbations and visits to a doctor in patients with gout.
With a constant increase in the number of patients with comorbid conditions, it is important to carry out further study of pleiotropic effects of sodium-glucose cotransporter-2 inhibitors for the subsequent introduction of new data into clinical practice.
Full Text
##article.viewOnOriginalSite##About the authors
A. R. Kondratieva
Privolzhsky Research Medical University
Email: zwx2@mail.ru
ORCID iD: 0000-0001-8450-4537
5th-year Student of the Medical Faculty
Russian Federation, Nizhny NovgorodE. A. Khazova
Privolzhsky Research Medical University
Email: zwx2@mail.ru
ORCID iD: 0009-0001-0962-8668
5th-year Student of the Medical Faculty
Russian Federation, Nizhny NovgorodA. V. Lobanova
Privolzhsky Research Medical University
Email: zwx2@mail.ru
ORCID iD: 0009-0008-5012-3312
5th-year of the Medical Faculty
Russian Federation, Nizhny NovgorodYu. A. Sorokina
Privolzhsky Research Medical University
Email: zwx2@mail.ru
ORCID iD: 0000-0001-8430-237X
PhD (Biology), Associate Professor of the Department of General and Clinical Pharmacology
Russian Federation, Nizhny NovgorodA. A. Mosina
Privolzhsky Research Medical University
Email: zwx2@mail.ru
ORCID iD: 0000-0003-3659-3576
PhD (Biology), Assistant of the Department of General and Clinical Pharmacology
Russian Federation, Nizhny NovgorodO. V. Zanozina
Privolzhsky Research Medical University; Nizhny Novgorod Regional Clinical Hospital named after N.A. Semashko
Author for correspondence.
Email: zwx2@mail.ru
ORCID iD: 0000-0003-1830-3600
DSc (Medicine), Associate Professor, Professor of the Department of Hospital Therapy and General Medical Practice named after V.G. Vogralik, Head of the Endocrinological Department
Russian Federation, Nizhny Novgorod; Nizhny NovgorodReferences
- Nauck M.A. Update on developments with SGLT2 inhibitors in the management of type 2 diabetes. Drug Des Devel Ther. 2014; 8: 1335–80. doi: 10.2147/DDDT.S50773
- Cowie M.R., Fisher M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol. 2020; 17 (12): 761–772. doi: 10.1038/s41569-020-0406-8
- Zinman B., Wanner C., Lachin J.M., Fitchett D., Bluhmki E., Hantel S., Mattheus M., Devins T., Johansen O.E., Woerle H.J., Broedl U.C., Inzucchi S.E.; EMPA-REG OUTCOME Investigators. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015; 373 (22): 2117–28. doi: 10.1056/NEJMoa1504720
- Timmis A., Vardas P., Townsend N., Torbica A., Katus H., De Smedt D., Gale C.P., Maggioni A.P., Petersen S.E., Huculeci R., Kazakiewicz D., de Benito Rubio V., Ignatiuk B., Raisi-Estabragh Z., Pawlak A., Karagiannidis E., Treskes R., Gaita D., Beltrame J.F., McConnachie A., Bardinet I., Graham I., Flather M., Elliott P., Mossialos E.A., Weidinger F., Achenbach S.; Atlas Writing Group, European Society of Cardiology. European Society of Cardiology: cardiovascular disease statistics 2021. Eur Heart J. 2022; 43 (8): 716–799. doi: 10.1093/eurheartj/ ehab892
- Shukla V., Shakya A.K., Perez-Pinzon M.A., Dave K.R. Cerebral ischemic damage in diabetes: an inflammatory perspective. J Neuroinflammation. 2017; 14 (1): 21. DOI: 10.1186/ s12974-016-0774-5
- Shim B., Stokum J.A., Moyer M., Tsymbalyuk N., Tsymbalyuk O., Keledjian K., Ivanova S., Tosun C., Gerzanich V., Simard J.M. Canagliflozin, an Inhibitor of the Na+ -Coupled D-Glucose Cotransporter, SGLT2, Inhibits Astrocyte Swelling and Brain Swelling in Cerebral Ischemia. Cells 2023; 12: 2221. doi: 10.3390/cells12182221
- Andreadou I., Efentakis P., Balafas E., Togliatto G., Davos C.H., Varela A., Dimitriou C.A., Nikolaou P.E., Maratou E., Lambadiari V., Ikonomidis I., Kostomitsopoulos N., Brizzi M.F., Dimitriadis G., Iliodromitis E.K. Empagliflozin Limits Myocardial Infarction in Vivo and Cell Death in Vitro: Role of STAT3, Mitochondria, and Redox Aspects. Front Physiol. 2017; 8: 1077. doi: 10.3389/fphys.2017.01077
- Abdel-Latif R.G., Rifaai R.A., Amin E.F. Empagliflozin alleviates neuronal apoptosis induced by cerebral ischemia/reperfusion injury through HIF-1/VEGF signaling pathway. Arch Pharm Res. 2020; 43 (5): 514–525. doi: 10.1007/s12272-020-01237-y
- Amin E.F., Rifaai R.A., Abdel-Latif R.G. Empagliflozin attenuates transient cerebral ischemia/reperfusion injury in hyperglycemic rats via repressing oxidative-inflammatory-apoptotic pathway. Fundam Clin Pharmacol. 2020; 34 (5): 548–558. doi: 10.1111/fcp.12548
- Hayden M.R., Grant D.G., Aroor A.R., DeMarco V.G. Empagliflozin Ameliorates Type 2 Diabetes-Induced Ultrastructural Remodeling of the Neurovascular Unit and Neuroglia in the Female db/db Mouse. Brain Sci. 2019; 9 (3): 57. doi: 10.3390/brainsci9030057
- Vercalsteren E., Karampatsi D., Buizza C., Nyström T., Klein T., Paul G., Patrone C., Darsalia V. The SGLT2 inhibitor Empagliflozin promotes post-stroke functional recovery in diabetic mice. Cardiovasc Diabetol. 2024; 23 (1): 88. DOI: 10.1186/ s12933-024-02174-6
- Vercalsteren E., Karampatsi D., Buizza C., Nyström T., Klein T., Paul G., Patrone C., Darsalia V. The SGLT2 inhibitor Empagliflozin promotes post-stroke functional recovery in diabetic mice. Cardiovasc Diabetol. 2024; 23 (1): 88. doi: 10.1186/s12933-024-02174-6
- Jiang Y., Han J., Li Y., Wu Y., Liu N., Shi S.X., Lin L., Yuan J., Wang S., Ning M.M., Dumont A.S., Wang X. Delayed rFGF21 Administration Improves Cerebrovascular Remodeling and White Matter Repair After Focal Stroke in Diabetic Mice. Transl Stroke Res. 2022; 13 (2): 311–325. doi: 10.1007/s12975-021-00941-1
- Dordoe C., Chen K., Huang W., Chen J., Hu J., Wang X., Lin L. Roles of Fibroblast Growth Factors and Their Therapeutic Potential in Treatment of Ischemic Stroke. Front Pharmacol. 2021; 12: 671131. doi: 10.3389/fphar.2021.671131
- Jiang Y., Liu N., Wang Q., Yu Z., Lin L., Yuan J., Guo S., Ahn B.J., Wang X.J., Li X., Lo E.H., Sun X., Wang X. Endocrine Regulator rFGF21 (Recombinant Human Fibroblast Growth Factor 21) Improves Neurological Outcomes Following Focal Ischemic Stroke of Type 2 Diabetes Mellitus Male Mice. Stroke. 2018; 49 (12): 3039–3049. doi: 10.1161/STROKEAHA. 118.022119
- Flippo K.H., Potthoff M.J. Metabolic Messengers: FGF21. Nat Metab. 2021; 3 (3): 309–317. doi: 10.1038/s42255-021-00354-2
- Wang Z., Leng Y., Wang J., Liao H.M., Bergman J., Leeds P., Kozikowski A., Chuang D.M. Tubastatin A, an HDAC6 inhibitor, alleviates stroke-induced brain infarction and functional deficits: potential roles of -tubulin acetylation and FGF-21 up-regulation. Sci Rep. 2016; 6: 19626. doi: 10.1038/srep19626
- Gough S.M, Casella A., Ortega K.J., Hackam A.S. Neuroprotection by the Ketogenic Diet: Evidence and Controversies. Front Nutr. 2021; 8: 782657. doi: 10.3389/fnut.2021.782657
- Gibson C.L., Murphy A.N., Murphy S.P. Stroke outcome in the ketogenic state--a systematic review of the animal data. J Neurochem. 2012; 123 Suppl 2 (0 2): 52–7. doi: 10.1111/j.1471-4159.2012.07943.x
- Takashima M., Nakamura K., Kiyohara T., Wakisaka Y., Hidaka M., Takaki H., Yamanaka K., Shibahara T., Wakisaka M., Ago T., Kitazono T. Low-dose sodium-glucose cotransporter 2 inhibitor ameliorates ischemic brain injury in mice through pericyte protection without glucose-lowering effects. Commun Biol. 2022; 5 (1): 653. doi: 10.1038/s42003-022-03605-4
- Oh C.M., Cho S., Jang J.Y., Kim H., Chun S., Choi M., Park S., Ko Y.G. Cardioprotective Potential of an SGLT2 Inhibitor Against Doxorubicin-Induced Heart Failure. Korean Circ J. 2019; 49 (12): 1183–1195. doi: 10.4070/kcj.2019.0180
- Chen M. Empagliflozin attenuates doxorubicin-induced cardiotoxicity by activating AMPK/SIRT-1/PGC-1-mediated mitochondrial biogenesis. Toxicol Res (Camb). 2023; 12 (2): 216–223. doi: 10.1093/toxres/tfad007
- Quagliariello V., De Laurentiis M., Rea D., Barbieri A., Monti M.G., Carbone A., Paccone A., Altucci L., Conte M., Canale M.L., Botti G., Maurea N. The SGLT-2 inhibitor empagliflozin improves myocardial strain, reduces cardiac fibrosis and pro-inflammatory cytokines in non-diabetic mice treated with doxorubicin. Cardiovasc Diabetol. 2021; 20 (1): 150. doi: 10.1186/s12933-021-01346-y
- Barış V.Ö., Dinçsoy A.B., Gedikli E., Zırh S., Müftüoğlu S., Erdem A. Empagliflozin Significantly Prevents the Doxorubicin-induced Acute Cardiotoxicity via Non-antioxidant Pathways. Cardiovasc Toxicol. 2021; 21 (9): 747–758. doi: 10.1007/s12012-021-09665-y
- Dabour M.S., George M.Y., Daniel M.R., Blaes A.H., Zordoky B.N. The Cardioprotective and Anticancer Effects of SGLT2 Inhibitors: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol. 2024; 6 (2): 159–182. doi: 10.1016/j.jaccao.2024.01.007
- Liu Y., Wei X., Wu M., Xu J., Xu B., Kang L. Cardioprotective Roles of -Hydroxybutyrate Against Doxorubicin Induced Cardiotoxicity. Front Pharmacol. 2021; 11: 603596. doi: 10.3389/fphar.2020.603596
- Wang C.Y., Chen C.C., Lin M.H., Su H.T., Ho M.Y., Yeh J.K., Tsai M.L., Hsieh I.C., Wen M.S. TLR9 Binding to Beclin 1 and Mitochondrial SIRT3 by a Sodium-Glucose Co-Transporter 2 Inhibitor Protects the Heart from Doxorubicin Toxicity. Biology (Basel). 2020; 9 (11): 369. doi: 10.3390/biology9110369
- Tran S., Fairlie W.D., Lee E.F. BECLIN1: Protein Structure, Function and Regulation. Cells. 2021; 10 (6): 1522. DOI: 10.3390/ cells10061522
- Karapetyan L., Luke J.J., Davar D. Toll-Like Receptor 9 Agonists in Cancer. Onco Targets Ther. 2020; 13: 10039–10060. doi: 10.2147/OTT.S247050
- Chen J., Chen S., Zhang B., Liu J. SIRT3 as a potential therapeutic target for heart failure. Pharmacol Res. 2021; 165: 105432. doi: 10.1016/j.phrs.2021.105432
- Abdel-Qadir H., Carrasco R., Austin P.C., Chen Y., Zhou L., Fang J., Su H.M.H., Lega I.C., Kaul P., Neilan T.G., Thavendiranathan P. The Association of Sodium-Glucose Cotransporter 2 Inhibitors With Cardiovascular Outcomes in Anthracycline-Treated Patients With Cancer. JACC CardioOncol. 2023; 5 (3): 318–328. doi: 10.1016/j.jaccao.2023.03.011
- Nakachi S., Okamoto S., Tamaki K., Nomura I., Tomihama M., Nishi Y., Fukushima T., Tanaka Y., Morishima S., Imamura M., Maeda S., Tsutsui M., Matsushita M., Masuzaki H. Impact of anti-diabetic sodium-glucose cotransporter 2 inhibitors on tumor growth of intractable hematological malignancy in humans. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022; 149: 112864. doi: 10.1016/j.biopha.2022.112864
- Mohite P., Lokwani D.K., Sakle N.S. Exploring the therapeutic potential of SGLT2 inhibitors in cancer treatment: integrating in silico and in vitro investigations. Naunyn Schmiedebergs Arch Pharmacol. 2024; 397 (8): 6107–6119. doi: 10.1007/s00210-024-03021-x
- Luo J., Hendryx M., Dong Y. Sodium-glucose cotransporter 2 (SGLT2) inhibitors and non-small cell lung cancer survival. Br J Cancer. 2023; 128 (8): 1541–1547. doi: 10.1038/s41416-023-02177-2
- Hendryx M., Dong Y., Ndeke J.M., Luo J. Sodium-glucose cotransporter 2 (SGLT2) inhibitor initiation and hepatocellular carcinoma prognosis. PLoS One 2022; 17 (9): e0274519. doi: 10.1371/journal.pone.0274519
- Kuo H.H., Wang K.T., Chen H.H., Lai Z.Y., Lin P.L., Chuang Y.J., Liu L.Y. Cardiovascular outcomes associated with SGLT2 inhibitor therapy in patients with type 2 diabetes mellitus and cancer: a systematic review and meta-analysis. Diabetol Metab Syndr. 2024; 16 (1): 108. doi: 10.1186/s13098-024-01354-4
- Zhang Z., Dalan R., Hu Z., Wang J.W., Chew N.W., Poh K.K., Tan R.S., Soong T.W., Dai Y., Ye L., Chen X. Reactive Oxygen Species Scavenging Nanomedicine for the Treatment of Ischemic Heart Disease. Adv Mater. 2022; 34 (35): e2202169. doi: 10.1002/adma.202202169
- D'Onofrio N., Sardu C., Trotta M.C., Scisciola L., Turriziani F., Ferraraccio F., Panarese I., Petrella L., Fanelli M., Modugno P., Massetti M., Marfella L.V., Sasso F.C., Rizzo M.R., Barbieri M., Furbatto F., Minicucci F., Mauro C., Federici M., Balestrieri M.L., Paolisso G., Marfella R. Sodium-glucose co-transporter2 expression and inflammatory activity in diabetic atherosclerotic plaques: Effects of sodium-glucose co-transporter2 inhibitor treatment. Mol Metab. 2021; 54: 101337. doi: 10.1016/j.molmet.2021.101337
- Sánchez-García A., Simental-Mendía M., Millán-Alanís J.M., Simental-Mendía L.E. Effect of sodium-glucose co-transporter 2 inhibitors on lipid profile: A systematic review and meta-analysis of 48 randomized controlled trials. Pharmacol Res. 2020; 160: 105068. doi: 10.1016/j.phrs.2020.105068
- Sawada T., Uzu K., Hashimoto N., Onishi T., Takaya T., Shimane A., Taniguchi Y., Yasaka Y., Ohara T., Kawai H. Empagliflozin's Ameliorating Effect on Plasma Triglycerides: Association with Endothelial Function Recovery in Diabetic Patients with Coronary Artery Disease. J Atheroscler Thromb. 2020; 27 (7): 644–656. doi: 10.5551/jat.50807
- Lee H.F., Chan Y.H., Chuang C., Li P.R., Yeh Y.H., Hsiao F.C., Peng J.R., See L.C. Cardiovascular, renal, and lower limb outcomes in patients with type 2 diabetes after percutaneous coronary intervention and treated with sodium-glucose cotransporter 2 inhibitors vs. dipeptidyl peptidase-4 inhibitors. Eur Heart J Cardiovasc Pharmacother. 2023; 9 (4): 301–310. doi: 10.1093/ehjcvp/pvad004
- Zhang Q., Deng Z., Li T., Chen K., Zeng Z. SGLT2 inhibitor improves the prognosis of patients with coronary heart disease and prevents in-stent restenosis. Front Cardiovasc Med. 2024; 10: 1280547. doi: 10.3389/fcvm.2023.1280547
- Hashikata T., Ikutomi M., Jimba T., Shindo A., Kakuda N., Katsushika S., Yokoyama M., Kishi M., Sato T., Matsushita M., Ohnishi S., Yamasaki M. Empagliflozin attenuates neointimal hyperplasia after drug-eluting-stent implantation in patients with type 2 diabetes. Heart Vessels. 2020; 35 (10): 1378–1389. doi: 10.1007/s00380-020-01621-0
- Heyward J., Mansour O., Olson L., Singh S., Alexander G.C. Association between sodium-glucose cotransporter 2 (SGLT2) inhibitors and lower extremity amputation: A systematic review and meta-analysis. PLoS One 2020; 15 (6): e0234065. doi: 10.1371/journal.pone.0234065
- Peyton K.J., Behnammanesh G., Durante G.L., Durante W. Canagliflozin Inhibits Human Endothelial Cell Inflammation through the Induction of Heme Oxygenase-1. Int J Mol Sci. 2022; 23 (15): 8777. doi: 10.3390/ijms23158777
- Behnammanesh G., Durante G.L., Khanna Y.P., Peyton K.J., Durante W. Canagliflozin inhibits vascular smooth muscle cell proliferation and migration: Role of heme oxygenase-1. Redox Biol. 2020; 32: 101527. doi: 10.1016/j.redox.2020.101527
- Sardu C., Massetti M., Testa N., Martino L.D., Castellano G., Turriziani F., Sasso F.C., Torella M., De Feo M., Santulli G., Paolisso G., Marfella R. Effects of Sodium-Glucose Transporter 2 Inhibitors (SGLT2-I) in Patients With Ischemic Heart Disease (IHD) Treated by Coronary Artery Bypass Grafting via MiECC: Inflammatory Burden, and Clinical Outcomes at 5 Years of Follow-Up. Front Pharmacol. 2021; 12: 777083. doi: 10.3389/fphar.2021.777083.
- Paolisso P., Bergamaschi L., Santulli G., Gallinoro E., Cesaro A., Gragnano F., Sardu C., Mileva N., Foà A., Armillotta M., Sansonetti A., Amicone S., Impellizzeri A., Casella G., Mauro C., Vassilev D., Marfella R., Calabrò P., Barbato E., Pizzi C. Infarct size, inflammatory burden, and admission hyperglycemia in diabetic patients with acute myocardial infarction treated with SGLT2-inhibitors: a multicenter international registry. Cardiovasc Diabetol. 2022; 21 (1): 77. doi: 10.1186/s12933-022-01506-8
- Leask M.P., Merriman T.R. The genetic basis of urate control and gout: Insights into molecular pathogenesis from follow-up study of genome-wide association study loci. Best Pract Res Clin Rheumatol. 2021; 35 (4): 101721. doi: 10.1016/j.berh.2021.101721
- Boocock J., Leask M., Okada Y.; Asian Genetic Epidemiology Network (AGEN) Consortium; Matsuo H., Kawamura Y., Shi Y., Li C., Mount D.B., Mandal A.K., Wang W., Cadzow M., Gosling A.L., Major T.J., Horsfield J.A., Choi H.K., Fadason T., O'Sullivan J., Stahl E.A., Merriman T.R. Genomic dissection of 43 serum urate-associated loci provides multiple insights into molecular mechanisms of urate control. Hum Mol Genet. 2020; 29 (6): 923–943. doi: 10.1093/hmg/ddaa013
- Packer M. Hyperuricemia and Gout Reduction by SGLT2 Inhibitors in Diabetes and Heart Failure: JACC Review Topic of the Week. J Am Coll Cardiol. 2024; 83 (2): 371–381. doi: 10.1016/j.jacc.2023.10.030
- Packer M. SGLT2 Inhibitors Produce Cardiorenal Benefits by Promoting Adaptive Cellular Reprogramming to Induce a State of Fasting Mimicry: A Paradigm Shift in Understanding Their Mechanism of Action. Diabetes Care. 2020; 43 (3): 508–511. doi: 10.2337/dci19-0074
- Packer M. Foetal recapitulation of nutrient surplus signalling by O-GlcNAcylation and the failing heart. Eur J Heart Fail. 2023; 25 (8): 1199–1212. doi: 10.1002/ejhf.2972
- Packer M. Fetal Reprogramming of Nutrient Surplus Signaling, O-GlcNAcylation, and the Evolution of CKD. J Am Soc Nephrol. 2023; 34 (9): 1480–1491. DOI: 10.1681/ ASN.0000000000000177
- Yokose C., McCormick N., Abhishek A., Dalbeth N., Pascart T., Lioté F., Gaffo A., FitzGerald J., Terkeltaub R., Sise M.E., Januzzi J.L., Wexler D.J., Choi H.K. The clinical benefits of sodium-glucose cotransporter type 2 inhibitors in people with gout. Nat Rev Rheumatol. 2024; 20 (4): 216–231. doi: 10.1038/s41584-024-01092-x
- Chung M.C., Hung P.H., Hsiao P.J., Wu L.Y., Chang C.H., Wu M.J., Shieh J.J., Chung C.J. Association of Sodium-Glucose Transport Protein 2 Inhibitor Use for Type 2 Diabetes and Incidence of Gout in Taiwan. JAMA Netw Open. 2021; 4 (11): e2135353. doi: 10.1001/jamanetworkopen.2021.35353
- McCormick N., Yokose C., Wei J., Lu N., Wexler D.J., Aviña-Zubieta J.A., De Vera M.A., Zhang Y., Choi H.K. Comparative Effectiveness of Sodium-Glucose Cotransporter-2 Inhibitors for Recurrent Gout Flares and Gout-Primary Emergency Department Visits and Hospitalizations: A General Population Cohort Study. Ann Intern Med. 2023; 176 (8): 1067–1080. doi: 10.7326/M23-0724
- Wei J., Choi H.K., Dalbeth N., Li X., Li C., Zeng C., Lei G., Zhang Y. Gout Flares and Mortality After Sodium-Glucose Cotransporter-2 Inhibitor Treatment for Gout and Type 2 Diabetes. JAMA Netw Open. 2023; 6 (8): e2330885. doi: 10.1001/jamanetworkopen.2023.30885
- Wood D.T., Waterbury N.V., Lund B.C. Sodium glucose cotransporter 2 inhibitors and gout risk: a sequence symmetry analysis. Clin Rheumatol. 2023; 42 (9): 2469–2475. doi: 10.1007/s10067-023-06647-z
- Dotinga R. SGLT2 Inhibitors Begin to Show Therapeutic Potential in Rheumatology. Medscape. Rheumatology 2024; 5.
- Wagner B.R., Rao P.S. Sodium-glucose cotransporter 2 inhibitors: are they ready for prime time in the management of lupus nephritis? Curr Opin Rheumatol. 2024; 36 (3): 163–168. doi: 10.1097/BOR.0000000000001002
- Zhao X.Y., Li S.S., He Y.X., Yan L.J., Lv F., Liang Q.M., Gan Y.H., Han L.P., Xu H.D., Li Y.C., Qi Y.Y. SGLT2 inhibitors alleviated podocyte damage in lupus nephritis by decreasing inflammation and enhancing autophagy. Ann Rheum Dis. 2023; 82 (10): 1328–1340. doi: 10.1136/ard-2023-224242
- Jenkins B.J., Blagih J., Ponce-Garcia F.M., Canavan M., Gudgeon N., Eastham S., Hill D., Hanlon M.M., Ma E.H., Bishop E.L., Rees A., Cronin J.G., Jury E.C., Dimeloe S.K., Veale D.J., Thornton C.A., Vousden K.H., Finlay D.K., Fearon U., Jones G.W., Sinclair L.V., Vincent E.E., Jones N. Canagliflozin impairs T cell effector function via metabolic suppression in autoimmunity. Cell Metab. 2023; 35 (7): 1132–1146.e9. doi: 10.1016/j.cmet.2023.05.001
- Xiong Z., Liu T., Tse G., Gong M., Gladding P.A., Smaill B.H., Stiles M.K., Gillis A.M., Zhao J. A Machine Learning Aided Systematic Review and Meta-Analysis of the Relative Risk of Atrial Fibrillation in Patients With Diabetes Mellitus. Front Physiol. 2018; 9: 835. doi: 10.3389/fphys.2018.00835
- Aune D., Schlesinger S., Norat T., Riboli E. Diabetes mellitus and the risk of sudden cardiac death: A systematic review and meta-analysis of prospective studies. Nutr Metab Cardiovasc Dis. 2018; 28 (6): 543–556. doi: 10.1016/j.numecd.2018.02.011
- Liao J., Ebrahimi R., Ling Z., Meyer C., Martinek M., Sommer P., Futyma P., Di Vece D., Schratter A., Acou W.J., Zhu L., Kiuchi M.G., Liu S., Yin Y., Pürerfellner H., Templin C., Chen S. Effect of SGLT-2 inhibitors on arrhythmia events: insight from an updated secondary analysis of > 80,000 patients (the SGLT2i-Arrhythmias and Sudden Cardiac Death). Cardiovasc Diabetol. 2024; 23 (1): 78. doi: 10.1186/s12933-024-02137-x
- Zelniker T.A., Bonaca M.P., Furtado R.H.M., Mosenzon O., Kuder J.F., Murphy S.A., Bhatt D.L., Leiter L.A., McGuire D.K., Wilding J.P.H., Budaj A., Kiss R.G., Padilla F., Gause-Nilsson I., Langkilde A.M., Raz I., Sabatine M.S., Wiviott S.D. Effect of Dapagliflozin on Atrial Fibrillation in Patients With Type 2 Diabetes Mellitus: Insights From the DECLARE-TIMI 58 Trial. Circulation. 2020; 141 (15): 1227–1234. DOI: 10.1161/ CIRCULATIONAHA.119.044183
- Curtain J.P., Docherty K.F., Jhund P.S., Petrie M.C., Inzucchi S.E., Køber L., Kosiborod M.N., Martinez F.A., Ponikowski P., Sabatine M.S., Bengtsson O., Langkilde A.M., Sjöstrand M., Solomon S.D., McMurray J.J.V. Effect of dapagliflozin on ventricular arrhythmias, resuscitated cardiac arrest, or sudden death in DAPA-HF. Eur Heart J. 2021; 42 (36): 3727–3738. doi: 10.1093/eurheartj/ehab560
- Gawałko M., Saljic A., Li N., Abu-Taha I., Jespersen T., Linz D., Nattel S., Heijman J., Fender A., Dobrev D. Adiposity-associated atrial fibrillation: molecular determinants, mechanisms, and clinical significance. Cardiovasc Res. 2023; 119 (3): 614–630. doi: 10.1093/cvr/cvac093
- Habibi J., Aroor A.R., Sowers J.R., Jia G., Hayden M.R., Garro M., Barron B., Mayoux E., Rector R.S., Whaley-Connell A., DeMarco V.G. Sodium glucose transporter 2 (SGLT2) inhibition with empagliflozin improves cardiac diastolic function in a female rodent model of diabetes. Cardiovasc Diabetol. 2017; 16 (1): 9. doi: 10.1186/s12933-016-0489-z
- Shao Q., Meng L., Lee S., Tse G., Gong M., Zhang Z., Zhao J., Zhao Y., Li G., Liu T. Empagliflozin, a sodium glucose co-transporter-2 inhibitor, alleviates atrial remodeling and improves mitochondrial function in high-fat
- diet/streptozotocin-induced diabetic rats. Cardiovasc Diabetol. 2019; 18 (1): 165. doi: 10.1186/s12933-019-0964-4
Supplementary files
