Contemporary prospects for the use of sodium-glucose cotransporter-2 inhibitors

Cover Page

Cite item

Full Text

Abstract

To determine contemporary prospects for the use of non-glycemic effects of sodium-glucose cotransporter-2 inhibitors in comorbid patients, the analysis of existing studies was carried out.

The mechanisms of action of sodium-glucose cotransporter-2 inhibitors discovered during the EMPA-REG OUTCOME study which were previously unknown, encouraged further research on the use of these drugs in other pathological conditions. The authors of the article have analyzed some clinical and preclinical studies on the use of this drug group in such conditions as stroke, cancer, rheumatological diseases, and rhythm disorders, as well as their impact on the development of major adverse cardiovascular events. The effects of oxidative stress suppression in the myocardium and nervous tissue with an increase in the number of mitochondria which reduces the risk of developing rhythm disorders, improves neoangiogenesis in the focus of ischemic necrosis, and has neuroprotective effects are described in the article. In oncological diseases, gliflozins prevent proliferation of tumor cells and oncogenesis through the induction of late apoptosis and also have cardioprotective effects in patients undergoing chemotherapy. The use of these medicines reduces the incidence of major adverse cardiovascular events, as well as restenosis after intravascular interventions. The positive effect on the course of rheumatological diseases was in improving laboratory parameters in a number of diseases and reducing the frequency of exacerbations and visits to a doctor in patients with gout.

With a constant increase in the number of patients with comorbid conditions, it is important to carry out further study of pleiotropic effects of sodium-glucose cotransporter-2 inhibitors for the subsequent introduction of new data into clinical practice.

About the authors

A. R. Kondratieva

Privolzhsky Research Medical University

Email: zwx2@mail.ru
ORCID iD: 0000-0001-8450-4537

5th-year Student of the Medical Faculty

Russian Federation, Nizhny Novgorod

E. A. Khazova

Privolzhsky Research Medical University

Email: zwx2@mail.ru
ORCID iD: 0009-0001-0962-8668

5th-year Student of the Medical Faculty

Russian Federation, Nizhny Novgorod

A. V. Lobanova

Privolzhsky Research Medical University

Email: zwx2@mail.ru
ORCID iD: 0009-0008-5012-3312

5th-year of the Medical Faculty

Russian Federation, Nizhny Novgorod

Yu. A. Sorokina

Privolzhsky Research Medical University

Email: zwx2@mail.ru
ORCID iD: 0000-0001-8430-237X

PhD (Biology), Associate Professor of the Department of General and Clinical Pharmacology

Russian Federation, Nizhny Novgorod

A. A. Mosina

Privolzhsky Research Medical University

Email: zwx2@mail.ru
ORCID iD: 0000-0003-3659-3576

PhD (Biology), Assistant of the Department of General and Clinical Pharmacology

Russian Federation, Nizhny Novgorod

O. V. Zanozina

Privolzhsky Research Medical University; Nizhny Novgorod Regional Clinical Hospital named after N.A. Semashko

Author for correspondence.
Email: zwx2@mail.ru
ORCID iD: 0000-0003-1830-3600

DSc (Medicine), Associate Professor, Professor of the Department of Hospital Therapy and General Medical Practice named after V.G. Vogralik, Head of the Endocrinological Department

Russian Federation, Nizhny Novgorod; Nizhny Novgorod

References

  1. Nauck M.A. Update on developments with SGLT2 inhibitors in the management of type 2 diabetes. Drug Des Devel Ther. 2014; 8: 1335–80. doi: 10.2147/DDDT.S50773
  2. Cowie M.R., Fisher M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol. 2020; 17 (12): 761–772. doi: 10.1038/s41569-020-0406-8
  3. Zinman B., Wanner C., Lachin J.M., Fitchett D., Bluhmki E., Hantel S., Mattheus M., Devins T., Johansen O.E., Woerle H.J., Broedl U.C., Inzucchi S.E.; EMPA-REG OUTCOME Investigators. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015; 373 (22): 2117–28. doi: 10.1056/NEJMoa1504720
  4. Timmis A., Vardas P., Townsend N., Torbica A., Katus H., De Smedt D., Gale C.P., Maggioni A.P., Petersen S.E., Huculeci R., Kazakiewicz D., de Benito Rubio V., Ignatiuk B., Raisi-Estabragh Z., Pawlak A., Karagiannidis E., Treskes R., Gaita D., Beltrame J.F., McConnachie A., Bardinet I., Graham I., Flather M., Elliott P., Mossialos E.A., Weidinger F., Achenbach S.; Atlas Writing Group, European Society of Cardiology. European Society of Cardiology: cardiovascular disease statistics 2021. Eur Heart J. 2022; 43 (8): 716–799. doi: 10.1093/eurheartj/ ehab892
  5. Shukla V., Shakya A.K., Perez-Pinzon M.A., Dave K.R. Cerebral ischemic damage in diabetes: an inflammatory perspective. J Neuroinflammation. 2017; 14 (1): 21. DOI: 10.1186/ s12974-016-0774-5
  6. Shim B., Stokum J.A., Moyer M., Tsymbalyuk N., Tsymbalyuk O., Keledjian K., Ivanova S., Tosun C., Gerzanich V., Simard J.M. Canagliflozin, an Inhibitor of the Na+ -Coupled D-Glucose Cotransporter, SGLT2, Inhibits Astrocyte Swelling and Brain Swelling in Cerebral Ischemia. Cells 2023; 12: 2221. doi: 10.3390/cells12182221
  7. Andreadou I., Efentakis P., Balafas E., Togliatto G., Davos C.H., Varela A., Dimitriou C.A., Nikolaou P.E., Maratou E., Lambadiari V., Ikonomidis I., Kostomitsopoulos N., Brizzi M.F., Dimitriadis G., Iliodromitis E.K. Empagliflozin Limits Myocardial Infarction in Vivo and Cell Death in Vitro: Role of STAT3, Mitochondria, and Redox Aspects. Front Physiol. 2017; 8: 1077. doi: 10.3389/fphys.2017.01077
  8. Abdel-Latif R.G., Rifaai R.A., Amin E.F. Empagliflozin alleviates neuronal apoptosis induced by cerebral ischemia/reperfusion injury through HIF-1/VEGF signaling pathway. Arch Pharm Res. 2020; 43 (5): 514–525. doi: 10.1007/s12272-020-01237-y
  9. Amin E.F., Rifaai R.A., Abdel-Latif R.G. Empagliflozin attenuates transient cerebral ischemia/reperfusion injury in hyperglycemic rats via repressing oxidative-inflammatory-apoptotic pathway. Fundam Clin Pharmacol. 2020; 34 (5): 548–558. doi: 10.1111/fcp.12548
  10. Hayden M.R., Grant D.G., Aroor A.R., DeMarco V.G. Empagliflozin Ameliorates Type 2 Diabetes-Induced Ultrastructural Remodeling of the Neurovascular Unit and Neuroglia in the Female db/db Mouse. Brain Sci. 2019; 9 (3): 57. doi: 10.3390/brainsci9030057
  11. Vercalsteren E., Karampatsi D., Buizza C., Nyström T., Klein T., Paul G., Patrone C., Darsalia V. The SGLT2 inhibitor Empagliflozin promotes post-stroke functional recovery in diabetic mice. Cardiovasc Diabetol. 2024; 23 (1): 88. DOI: 10.1186/ s12933-024-02174-6
  12. Vercalsteren E., Karampatsi D., Buizza C., Nyström T., Klein T., Paul G., Patrone C., Darsalia V. The SGLT2 inhibitor Empagliflozin promotes post-stroke functional recovery in diabetic mice. Cardiovasc Diabetol. 2024; 23 (1): 88. doi: 10.1186/s12933-024-02174-6
  13. Jiang Y., Han J., Li Y., Wu Y., Liu N., Shi S.X., Lin L., Yuan J., Wang S., Ning M.M., Dumont A.S., Wang X. Delayed rFGF21 Administration Improves Cerebrovascular Remodeling and White Matter Repair After Focal Stroke in Diabetic Mice. Transl Stroke Res. 2022; 13 (2): 311–325. doi: 10.1007/s12975-021-00941-1
  14. Dordoe C., Chen K., Huang W., Chen J., Hu J., Wang X., Lin L. Roles of Fibroblast Growth Factors and Their Therapeutic Potential in Treatment of Ischemic Stroke. Front Pharmacol. 2021; 12: 671131. doi: 10.3389/fphar.2021.671131
  15. Jiang Y., Liu N., Wang Q., Yu Z., Lin L., Yuan J., Guo S., Ahn B.J., Wang X.J., Li X., Lo E.H., Sun X., Wang X. Endocrine Regulator rFGF21 (Recombinant Human Fibroblast Growth Factor 21) Improves Neurological Outcomes Following Focal Ischemic Stroke of Type 2 Diabetes Mellitus Male Mice. Stroke. 2018; 49 (12): 3039–3049. doi: 10.1161/STROKEAHA. 118.022119
  16. Flippo K.H., Potthoff M.J. Metabolic Messengers: FGF21. Nat Metab. 2021; 3 (3): 309–317. doi: 10.1038/s42255-021-00354-2
  17. Wang Z., Leng Y., Wang J., Liao H.M., Bergman J., Leeds P., Kozikowski A., Chuang D.M. Tubastatin A, an HDAC6 inhibitor, alleviates stroke-induced brain infarction and functional deficits: potential roles of -tubulin acetylation and FGF-21 up-regulation. Sci Rep. 2016; 6: 19626. doi: 10.1038/srep19626
  18. Gough S.M, Casella A., Ortega K.J., Hackam A.S. Neuroprotection by the Ketogenic Diet: Evidence and Controversies. Front Nutr. 2021; 8: 782657. doi: 10.3389/fnut.2021.782657
  19. Gibson C.L., Murphy A.N., Murphy S.P. Stroke outcome in the ketogenic state--a systematic review of the animal data. J Neurochem. 2012; 123 Suppl 2 (0 2): 52–7. doi: 10.1111/j.1471-4159.2012.07943.x
  20. Takashima M., Nakamura K., Kiyohara T., Wakisaka Y., Hidaka M., Takaki H., Yamanaka K., Shibahara T., Wakisaka M., Ago T., Kitazono T. Low-dose sodium-glucose cotransporter 2 inhibitor ameliorates ischemic brain injury in mice through pericyte protection without glucose-lowering effects. Commun Biol. 2022; 5 (1): 653. doi: 10.1038/s42003-022-03605-4
  21. Oh C.M., Cho S., Jang J.Y., Kim H., Chun S., Choi M., Park S., Ko Y.G. Cardioprotective Potential of an SGLT2 Inhibitor Against Doxorubicin-Induced Heart Failure. Korean Circ J. 2019; 49 (12): 1183–1195. doi: 10.4070/kcj.2019.0180
  22. Chen M. Empagliflozin attenuates doxorubicin-induced cardiotoxicity by activating AMPK/SIRT-1/PGC-1-mediated mitochondrial biogenesis. Toxicol Res (Camb). 2023; 12 (2): 216–223. doi: 10.1093/toxres/tfad007
  23. Quagliariello V., De Laurentiis M., Rea D., Barbieri A., Monti M.G., Carbone A., Paccone A., Altucci L., Conte M., Canale M.L., Botti G., Maurea N. The SGLT-2 inhibitor empagliflozin improves myocardial strain, reduces cardiac fibrosis and pro-inflammatory cytokines in non-diabetic mice treated with doxorubicin. Cardiovasc Diabetol. 2021; 20 (1): 150. doi: 10.1186/s12933-021-01346-y
  24. Barış V.Ö., Dinçsoy A.B., Gedikli E., Zırh S., Müftüoğlu S., Erdem A. Empagliflozin Significantly Prevents the Doxorubicin-induced Acute Cardiotoxicity via Non-antioxidant Pathways. Cardiovasc Toxicol. 2021; 21 (9): 747–758. doi: 10.1007/s12012-021-09665-y
  25. Dabour M.S., George M.Y., Daniel M.R., Blaes A.H., Zordoky B.N. The Cardioprotective and Anticancer Effects of SGLT2 Inhibitors: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol. 2024; 6 (2): 159–182. doi: 10.1016/j.jaccao.2024.01.007
  26. Liu Y., Wei X., Wu M., Xu J., Xu B., Kang L. Cardioprotective Roles of -Hydroxybutyrate Against Doxorubicin Induced Cardiotoxicity. Front Pharmacol. 2021; 11: 603596. doi: 10.3389/fphar.2020.603596
  27. Wang C.Y., Chen C.C., Lin M.H., Su H.T., Ho M.Y., Yeh J.K., Tsai M.L., Hsieh I.C., Wen M.S. TLR9 Binding to Beclin 1 and Mitochondrial SIRT3 by a Sodium-Glucose Co-Transporter 2 Inhibitor Protects the Heart from Doxorubicin Toxicity. Biology (Basel). 2020; 9 (11): 369. doi: 10.3390/biology9110369
  28. Tran S., Fairlie W.D., Lee E.F. BECLIN1: Protein Structure, Function and Regulation. Cells. 2021; 10 (6): 1522. DOI: 10.3390/ cells10061522
  29. Karapetyan L., Luke J.J., Davar D. Toll-Like Receptor 9 Agonists in Cancer. Onco Targets Ther. 2020; 13: 10039–10060. doi: 10.2147/OTT.S247050
  30. Chen J., Chen S., Zhang B., Liu J. SIRT3 as a potential therapeutic target for heart failure. Pharmacol Res. 2021; 165: 105432. doi: 10.1016/j.phrs.2021.105432
  31. Abdel-Qadir H., Carrasco R., Austin P.C., Chen Y., Zhou L., Fang J., Su H.M.H., Lega I.C., Kaul P., Neilan T.G., Thavendiranathan P. The Association of Sodium-Glucose Cotransporter 2 Inhibitors With Cardiovascular Outcomes in Anthracycline-Treated Patients With Cancer. JACC CardioOncol. 2023; 5 (3): 318–328. doi: 10.1016/j.jaccao.2023.03.011
  32. Nakachi S., Okamoto S., Tamaki K., Nomura I., Tomihama M., Nishi Y., Fukushima T., Tanaka Y., Morishima S., Imamura M., Maeda S., Tsutsui M., Matsushita M., Masuzaki H. Impact of anti-diabetic sodium-glucose cotransporter 2 inhibitors on tumor growth of intractable hematological malignancy in humans. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022; 149: 112864. doi: 10.1016/j.biopha.2022.112864
  33. Mohite P., Lokwani D.K., Sakle N.S. Exploring the therapeutic potential of SGLT2 inhibitors in cancer treatment: integrating in silico and in vitro investigations. Naunyn Schmiedebergs Arch Pharmacol. 2024; 397 (8): 6107–6119. doi: 10.1007/s00210-024-03021-x
  34. Luo J., Hendryx M., Dong Y. Sodium-glucose cotransporter 2 (SGLT2) inhibitors and non-small cell lung cancer survival. Br J Cancer. 2023; 128 (8): 1541–1547. doi: 10.1038/s41416-023-02177-2
  35. Hendryx M., Dong Y., Ndeke J.M., Luo J. Sodium-glucose cotransporter 2 (SGLT2) inhibitor initiation and hepatocellular carcinoma prognosis. PLoS One 2022; 17 (9): e0274519. doi: 10.1371/journal.pone.0274519
  36. Kuo H.H., Wang K.T., Chen H.H., Lai Z.Y., Lin P.L., Chuang Y.J., Liu L.Y. Cardiovascular outcomes associated with SGLT2 inhibitor therapy in patients with type 2 diabetes mellitus and cancer: a systematic review and meta-analysis. Diabetol Metab Syndr. 2024; 16 (1): 108. doi: 10.1186/s13098-024-01354-4
  37. Zhang Z., Dalan R., Hu Z., Wang J.W., Chew N.W., Poh K.K., Tan R.S., Soong T.W., Dai Y., Ye L., Chen X. Reactive Oxygen Species Scavenging Nanomedicine for the Treatment of Ischemic Heart Disease. Adv Mater. 2022; 34 (35): e2202169. doi: 10.1002/adma.202202169
  38. D'Onofrio N., Sardu C., Trotta M.C., Scisciola L., Turriziani F., Ferraraccio F., Panarese I., Petrella L., Fanelli M., Modugno P., Massetti M., Marfella L.V., Sasso F.C., Rizzo M.R., Barbieri M., Furbatto F., Minicucci F., Mauro C., Federici M., Balestrieri M.L., Paolisso G., Marfella R. Sodium-glucose co-transporter2 expression and inflammatory activity in diabetic atherosclerotic plaques: Effects of sodium-glucose co-transporter2 inhibitor treatment. Mol Metab. 2021; 54: 101337. doi: 10.1016/j.molmet.2021.101337
  39. Sánchez-García A., Simental-Mendía M., Millán-Alanís J.M., Simental-Mendía L.E. Effect of sodium-glucose co-transporter 2 inhibitors on lipid profile: A systematic review and meta-analysis of 48 randomized controlled trials. Pharmacol Res. 2020; 160: 105068. doi: 10.1016/j.phrs.2020.105068
  40. Sawada T., Uzu K., Hashimoto N., Onishi T., Takaya T., Shimane A., Taniguchi Y., Yasaka Y., Ohara T., Kawai H. Empagliflozin's Ameliorating Effect on Plasma Triglycerides: Association with Endothelial Function Recovery in Diabetic Patients with Coronary Artery Disease. J Atheroscler Thromb. 2020; 27 (7): 644–656. doi: 10.5551/jat.50807
  41. Lee H.F., Chan Y.H., Chuang C., Li P.R., Yeh Y.H., Hsiao F.C., Peng J.R., See L.C. Cardiovascular, renal, and lower limb outcomes in patients with type 2 diabetes after percutaneous coronary intervention and treated with sodium-glucose cotransporter 2 inhibitors vs. dipeptidyl peptidase-4 inhibitors. Eur Heart J Cardiovasc Pharmacother. 2023; 9 (4): 301–310. doi: 10.1093/ehjcvp/pvad004
  42. Zhang Q., Deng Z., Li T., Chen K., Zeng Z. SGLT2 inhibitor improves the prognosis of patients with coronary heart disease and prevents in-stent restenosis. Front Cardiovasc Med. 2024; 10: 1280547. doi: 10.3389/fcvm.2023.1280547
  43. Hashikata T., Ikutomi M., Jimba T., Shindo A., Kakuda N., Katsushika S., Yokoyama M., Kishi M., Sato T., Matsushita M., Ohnishi S., Yamasaki M. Empagliflozin attenuates neointimal hyperplasia after drug-eluting-stent implantation in patients with type 2 diabetes. Heart Vessels. 2020; 35 (10): 1378–1389. doi: 10.1007/s00380-020-01621-0
  44. Heyward J., Mansour O., Olson L., Singh S., Alexander G.C. Association between sodium-glucose cotransporter 2 (SGLT2) inhibitors and lower extremity amputation: A systematic review and meta-analysis. PLoS One 2020; 15 (6): e0234065. doi: 10.1371/journal.pone.0234065
  45. Peyton K.J., Behnammanesh G., Durante G.L., Durante W. Canagliflozin Inhibits Human Endothelial Cell Inflammation through the Induction of Heme Oxygenase-1. Int J Mol Sci. 2022; 23 (15): 8777. doi: 10.3390/ijms23158777
  46. Behnammanesh G., Durante G.L., Khanna Y.P., Peyton K.J., Durante W. Canagliflozin inhibits vascular smooth muscle cell proliferation and migration: Role of heme oxygenase-1. Redox Biol. 2020; 32: 101527. doi: 10.1016/j.redox.2020.101527
  47. Sardu C., Massetti M., Testa N., Martino L.D., Castellano G., Turriziani F., Sasso F.C., Torella M., De Feo M., Santulli G., Paolisso G., Marfella R. Effects of Sodium-Glucose Transporter 2 Inhibitors (SGLT2-I) in Patients With Ischemic Heart Disease (IHD) Treated by Coronary Artery Bypass Grafting via MiECC: Inflammatory Burden, and Clinical Outcomes at 5 Years of Follow-Up. Front Pharmacol. 2021; 12: 777083. doi: 10.3389/fphar.2021.777083.
  48. Paolisso P., Bergamaschi L., Santulli G., Gallinoro E., Cesaro A., Gragnano F., Sardu C., Mileva N., Foà A., Armillotta M., Sansonetti A., Amicone S., Impellizzeri A., Casella G., Mauro C., Vassilev D., Marfella R., Calabrò P., Barbato E., Pizzi C. Infarct size, inflammatory burden, and admission hyperglycemia in diabetic patients with acute myocardial infarction treated with SGLT2-inhibitors: a multicenter international registry. Cardiovasc Diabetol. 2022; 21 (1): 77. doi: 10.1186/s12933-022-01506-8
  49. Leask M.P., Merriman T.R. The genetic basis of urate control and gout: Insights into molecular pathogenesis from follow-up study of genome-wide association study loci. Best Pract Res Clin Rheumatol. 2021; 35 (4): 101721. doi: 10.1016/j.berh.2021.101721
  50. Boocock J., Leask M., Okada Y.; Asian Genetic Epidemiology Network (AGEN) Consortium; Matsuo H., Kawamura Y., Shi Y., Li C., Mount D.B., Mandal A.K., Wang W., Cadzow M., Gosling A.L., Major T.J., Horsfield J.A., Choi H.K., Fadason T., O'Sullivan J., Stahl E.A., Merriman T.R. Genomic dissection of 43 serum urate-associated loci provides multiple insights into molecular mechanisms of urate control. Hum Mol Genet. 2020; 29 (6): 923–943. doi: 10.1093/hmg/ddaa013
  51. Packer M. Hyperuricemia and Gout Reduction by SGLT2 Inhibitors in Diabetes and Heart Failure: JACC Review Topic of the Week. J Am Coll Cardiol. 2024; 83 (2): 371–381. doi: 10.1016/j.jacc.2023.10.030
  52. Packer M. SGLT2 Inhibitors Produce Cardiorenal Benefits by Promoting Adaptive Cellular Reprogramming to Induce a State of Fasting Mimicry: A Paradigm Shift in Understanding Their Mechanism of Action. Diabetes Care. 2020; 43 (3): 508–511. doi: 10.2337/dci19-0074
  53. Packer M. Foetal recapitulation of nutrient surplus signalling by O-GlcNAcylation and the failing heart. Eur J Heart Fail. 2023; 25 (8): 1199–1212. doi: 10.1002/ejhf.2972
  54. Packer M. Fetal Reprogramming of Nutrient Surplus Signaling, O-GlcNAcylation, and the Evolution of CKD. J Am Soc Nephrol. 2023; 34 (9): 1480–1491. DOI: 10.1681/ ASN.0000000000000177
  55. Yokose C., McCormick N., Abhishek A., Dalbeth N., Pascart T., Lioté F., Gaffo A., FitzGerald J., Terkeltaub R., Sise M.E., Januzzi J.L., Wexler D.J., Choi H.K. The clinical benefits of sodium-glucose cotransporter type 2 inhibitors in people with gout. Nat Rev Rheumatol. 2024; 20 (4): 216–231. doi: 10.1038/s41584-024-01092-x
  56. Chung M.C., Hung P.H., Hsiao P.J., Wu L.Y., Chang C.H., Wu M.J., Shieh J.J., Chung C.J. Association of Sodium-Glucose Transport Protein 2 Inhibitor Use for Type 2 Diabetes and Incidence of Gout in Taiwan. JAMA Netw Open. 2021; 4 (11): e2135353. doi: 10.1001/jamanetworkopen.2021.35353
  57. McCormick N., Yokose C., Wei J., Lu N., Wexler D.J., Aviña-Zubieta J.A., De Vera M.A., Zhang Y., Choi H.K. Comparative Effectiveness of Sodium-Glucose Cotransporter-2 Inhibitors for Recurrent Gout Flares and Gout-Primary Emergency Department Visits and Hospitalizations: A General Population Cohort Study. Ann Intern Med. 2023; 176 (8): 1067–1080. doi: 10.7326/M23-0724
  58. Wei J., Choi H.K., Dalbeth N., Li X., Li C., Zeng C., Lei G., Zhang Y. Gout Flares and Mortality After Sodium-Glucose Cotransporter-2 Inhibitor Treatment for Gout and Type 2 Diabetes. JAMA Netw Open. 2023; 6 (8): e2330885. doi: 10.1001/jamanetworkopen.2023.30885
  59. Wood D.T., Waterbury N.V., Lund B.C. Sodium glucose cotransporter 2 inhibitors and gout risk: a sequence symmetry analysis. Clin Rheumatol. 2023; 42 (9): 2469–2475. doi: 10.1007/s10067-023-06647-z
  60. Dotinga R. SGLT2 Inhibitors Begin to Show Therapeutic Potential in Rheumatology. Medscape. Rheumatology 2024; 5.
  61. Wagner B.R., Rao P.S. Sodium-glucose cotransporter 2 inhibitors: are they ready for prime time in the management of lupus nephritis? Curr Opin Rheumatol. 2024; 36 (3): 163–168. doi: 10.1097/BOR.0000000000001002
  62. Zhao X.Y., Li S.S., He Y.X., Yan L.J., Lv F., Liang Q.M., Gan Y.H., Han L.P., Xu H.D., Li Y.C., Qi Y.Y. SGLT2 inhibitors alleviated podocyte damage in lupus nephritis by decreasing inflammation and enhancing autophagy. Ann Rheum Dis. 2023; 82 (10): 1328–1340. doi: 10.1136/ard-2023-224242
  63. Jenkins B.J., Blagih J., Ponce-Garcia F.M., Canavan M., Gudgeon N., Eastham S., Hill D., Hanlon M.M., Ma E.H., Bishop E.L., Rees A., Cronin J.G., Jury E.C., Dimeloe S.K., Veale D.J., Thornton C.A., Vousden K.H., Finlay D.K., Fearon U., Jones G.W., Sinclair L.V., Vincent E.E., Jones N. Canagliflozin impairs T cell effector function via metabolic suppression in autoimmunity. Cell Metab. 2023; 35 (7): 1132–1146.e9. doi: 10.1016/j.cmet.2023.05.001
  64. Xiong Z., Liu T., Tse G., Gong M., Gladding P.A., Smaill B.H., Stiles M.K., Gillis A.M., Zhao J. A Machine Learning Aided Systematic Review and Meta-Analysis of the Relative Risk of Atrial Fibrillation in Patients With Diabetes Mellitus. Front Physiol. 2018; 9: 835. doi: 10.3389/fphys.2018.00835
  65. Aune D., Schlesinger S., Norat T., Riboli E. Diabetes mellitus and the risk of sudden cardiac death: A systematic review and meta-analysis of prospective studies. Nutr Metab Cardiovasc Dis. 2018; 28 (6): 543–556. doi: 10.1016/j.numecd.2018.02.011
  66. Liao J., Ebrahimi R., Ling Z., Meyer C., Martinek M., Sommer P., Futyma P., Di Vece D., Schratter A., Acou W.J., Zhu L., Kiuchi M.G., Liu S., Yin Y., Pürerfellner H., Templin C., Chen S. Effect of SGLT-2 inhibitors on arrhythmia events: insight from an updated secondary analysis of > 80,000 patients (the SGLT2i-Arrhythmias and Sudden Cardiac Death). Cardiovasc Diabetol. 2024; 23 (1): 78. doi: 10.1186/s12933-024-02137-x
  67. Zelniker T.A., Bonaca M.P., Furtado R.H.M., Mosenzon O., Kuder J.F., Murphy S.A., Bhatt D.L., Leiter L.A., McGuire D.K., Wilding J.P.H., Budaj A., Kiss R.G., Padilla F., Gause-Nilsson I., Langkilde A.M., Raz I., Sabatine M.S., Wiviott S.D. Effect of Dapagliflozin on Atrial Fibrillation in Patients With Type 2 Diabetes Mellitus: Insights From the DECLARE-TIMI 58 Trial. Circulation. 2020; 141 (15): 1227–1234. DOI: 10.1161/ CIRCULATIONAHA.119.044183
  68. Curtain J.P., Docherty K.F., Jhund P.S., Petrie M.C., Inzucchi S.E., Køber L., Kosiborod M.N., Martinez F.A., Ponikowski P., Sabatine M.S., Bengtsson O., Langkilde A.M., Sjöstrand M., Solomon S.D., McMurray J.J.V. Effect of dapagliflozin on ventricular arrhythmias, resuscitated cardiac arrest, or sudden death in DAPA-HF. Eur Heart J. 2021; 42 (36): 3727–3738. doi: 10.1093/eurheartj/ehab560
  69. Gawałko M., Saljic A., Li N., Abu-Taha I., Jespersen T., Linz D., Nattel S., Heijman J., Fender A., Dobrev D. Adiposity-associated atrial fibrillation: molecular determinants, mechanisms, and clinical significance. Cardiovasc Res. 2023; 119 (3): 614–630. doi: 10.1093/cvr/cvac093
  70. Habibi J., Aroor A.R., Sowers J.R., Jia G., Hayden M.R., Garro M., Barron B., Mayoux E., Rector R.S., Whaley-Connell A., DeMarco V.G. Sodium glucose transporter 2 (SGLT2) inhibition with empagliflozin improves cardiac diastolic function in a female rodent model of diabetes. Cardiovasc Diabetol. 2017; 16 (1): 9. doi: 10.1186/s12933-016-0489-z
  71. Shao Q., Meng L., Lee S., Tse G., Gong M., Zhang Z., Zhao J., Zhao Y., Li G., Liu T. Empagliflozin, a sodium glucose co-transporter-2 inhibitor, alleviates atrial remodeling and improves mitochondrial function in high-fat
  72. diet/streptozotocin-induced diabetic rats. Cardiovasc Diabetol. 2019; 18 (1): 165. doi: 10.1186/s12933-019-0964-4

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».