Dose-dependent effect of cadaverine on hydroxyl radicals’ production by human peripheral blood leukocytes

Cover Page

Cite item

Full Text

Abstract

Objective. To assess changes in the generation of hydroxyl radicals by leukocytes under the influence of cadaverine at concentrations of 1, 5 and 25 mmol/L.

Materials and methods. Peripheral venous blood samples were obtained from 40 apparently healthy donors. To assess the production of hydroxyl radicals, a luminol-dependent chemiluminescence reaction with blood leukocytes, which were pre-incubated with cadaverine at concentrations of 1, 5 and 25 mmol/L was carried out. The study was conducted on a Luminoskan Ascent® Thermo Labsystems (USA) luminometer for 180 minutes. For statistical analysis, the integral chemiluminescence indicator for the entire measurement period (RLU) was used. The time to reach the maximum of light flashes in minutes, the intensity of the utmost glow, and the area under the luminescence extinction curve were calculated.

Results. It was determined that pre-incubation of cells with cadaverine significantly reduces their time to reach the maximum generation of hydroxyl radicals. In addition, cadaverine enhances the intensity of the reaction of luminol-dependent chemiluminescence of leukocytes of healthy donors, and the greatest stimulating effect was recorded at a polyamine concentration of 5 mmol/L (p =0,009 to samples with a spontaneous reaction, p =0,007 and 0,010 to samples with cadaverine 1 mmol/L and 5 mmol/L respectively). Cadaverine increases the area under the reaction curve, it being the most significant at a concentration of 5 mmol/L – 20.89±3.00 c.u. versus 0.86±0.07 c.u. with a spontaneous reaction (p=0,001).

Conclusions. The results of the study indicate a possible effect of cadaverine on the mechanisms of hydroxyl radical formation, as well as the activity of the diamine oxidase enzyme in leukocytes. It can be supposed that the combination of these effects contributes to the development of the environment favorable for microorganisms at the focus of inflammation. Thus, microorganisms that produce cadaverine, which modulates the generation of hydroxyl radicals by leukocytes, adapt to their environment, creating a special type of microenvironment, which probably results in an asymptomatic course of the inflammatory process.

About the authors

I. A. Morozov

E.A. Vagner Perm State Medical University

Author for correspondence.
Email: Lonny8@yandex.ru
ORCID iD: 0000-0003-4233-3711

Postgraduate Student of the Department of Microbiology and Virology

Russian Federation, Perm

References

  1. Годовалов А.П., Карпунина Т.И., Гущин М.О. Особенности межмикробных отношений в микробиоте влагалища инфертильных женщин. Медицинский академический журнал 2017; 17 (4): 53–54 / Godovalov A.P., Karpunina T.I., Gushhin M.O. Features of inter-microbial relations in the infertile women’s vagina microbiota. Medical academic journal 2017; 17 (4): 53–54 (in Russian).
  2. Lohinai Z., Keremi B., Szoko E., Tabi T., Szabo C., Tulassay Z., Levine M. Bacterial lysine decarboxylase influences human dental biofilm lysine content, biofilm accumulation, and subclinical gingival inflammation. J. Periodontol. 2012; 83 (8): 1048–1056. doi: 10.1902/jop.2011.110474
  3. Fujisawa S., Kadoma Y. Kinetic evaluation of polyamines as radical scavengers. Anticancer Res. 2005; 25 (2): 965–969.
  4. Годовалов А.П., Карпунина Т.И., Нестерова Л.Ю., Морозов И.А. Полиамины как рецептор-независимые факторы агрессии условно-патогенных микроорганизмов. Иммунопатология, аллергология, инфектология 2019; 3: 91–94 / Godovalov A.P., Karpunina T.I., Nesterova L.Yu., Morozov I.A. Polyamines as receptor-independent factors of aggression of opportunistic microorganisms. Immunopatologiya, allergologiya, infektologiya 2019; 3: 91–94 (in Russian).
  5. Нестерова Л.Ю., Негорелова Е.В., Ткаченко А.Г. Биогенные полиамины как модуляторы активности Quorum sens-ing системы и биопленкообразования Vibrio harveyi. Вестник Пермского университета. Серия: Биология 2019; 3: 300–308 / Nesterova L.Yu., Negorelova E.V., Tkachenko A.G. Biogenic polyamines as modulators of the activity of the Quorum sensing system and biofilm formation of Vibrio harveyi. Bulletin of Perm University. Biology Series 2019; 3: 300–308 (in Russian).
  6. Igarashi K., Kashiwagi K. Characterization of genes for polyamine modulon. Methods Mol. Biol. 2011; 720: 51–65. doi: 10.1007/978-1-61779-034-8_3
  7. Equi A.M., Brown A.M., Cooper A., Her S.K., Watson A.B., Robins D.J. Oxidation of putrescine and cadaverine derivatives by diamine oxidases. Tetrahedron 1991; 47 (3): 507–518.
  8. Ткаченко А.Г. Стрессорные ответы бактериальных клеток как механизм развития толерантности к антибиотикам. Прикладная биохимия и микробиология 2018; 54 (2): 110–133 / Tkachenko A.G. Stress responses of bacterial cells as a mechanism for the development of tolerance to antibiotics. Applied Biochemistry and Microbiology 2018; 54 (2): 110–133 (in Russian).
  9. Bigger J.W. Treatment of staphylococcal infections with penicillin by intermittent sterilization. Lancet 1944; 244 (6320): 497–500.
  10. Shah P., Swiatlo E. A multifaceted role for polyamines in bacterial pathogens. Mol. Microbiol. 2008; 68 (1): 4–16. doi: 10.1111/j.1365-2958.2008.06126.x
  11. Flannagan R.S., Jaumouillé V., Grinstein S. The cell biology of phagocytosis. Annu. Rev. Pathol. 2012; 7: 61–98. doi: 10.1146/annurev-pathol-011811-132445
  12. Janeway C.A. Jr., Medzhitov R. Innate immune recognition. Annu. Rev. Immunol. 2002; 20: 197–216.
  13. Teng T.-S., Ji A., Ji X.-Y., Li Y.-Z. Neutrophils, and immunity: from bactericidal action to being conquered. J. Immunol. Res. 2017; 2017: 9671604. doi: 10.1155/2017/9671604
  14. Морозов И.А., Карпунина Т.И., Годовалов А.П. Кадаверин как регулятор активности про- и эукариотических клеток Аллергология и иммунология 2018; 19 (3): 149–150 / Morozov I.A., Karpunina T.I., Godovalov A.P. Cadaverine as a regulator of the activity of pro- and eukaryotic cells. Allergology and Immunology 2018; 19: 149–150 (in Russian).
  15. Tabor C.W., Tabor H. Polyamines in microorganisms. Microbiol. Rev. 1985; 49 (1): 81–99.
  16. Mei Y., Ran L., Ying X., Yuan Z., Xin S. A sequential injection analysis/chemiluminescent plant tissue-based biosensor system for the determination of diamine. Biosens Bioelectron. 2007; 22 (6): 871–876. doi: 10.1016/j.bios.2006.03.003
  17. Houen G., Högdall E.V., Barkholt V., Nørskov L. Lactoferrin: similarity to diamine oxidase and purification by aminohexyl affin-ity chromatography. Eur. J. Biochem. 1996; 241 (1): 303–308.
  18. Shilov J.I., Orlova E.G. Role of adrenergic mechanisms in regulation of phagocytic cell functions in acute stress response. Immunology Letters. 2003; 86: 229–233. doi: 10.1016/s0165-2478(03)00027-0
  19. Hesterberg R.S., Cleveland J.L., Epling-Burnette P.K. Role of polyamines in immune cell functions. Med. Sci. (Basel). 2018; 6 (1): 22. doi: 10.3390/medsci6010022
  20. Бухарин О.В. Адаптивные стратегии взаимодействия возбудителя и хозяина при инфекции. Вестник Российской академии наук 2018; 88 (7): 637–643 / Bukharin O.V. Adaptive strategies for the interaction of the pathogen and the host during infection. Bulletin of the Russian Academy of Sciences 2018; 88 (7): 637–643 (in Russian).
  21. Fisher R.A., Gollan B., Helaine S. Persistent bacterial infections and persister cells. Nat. Rev. Microbiol. 2017; 15 (8): 453–464. doi: 10.1038/nrmicro.2017.42
  22. Uribe-Querol E., Rosales C. Control of phagocytosis by microbial pathogens. Front. Immunol. 2017; 8: 1368. doi: 10.3389/fimmu.2017.01368
  23. Годовалов А.П., Даниелян Т.Ю., Карпунина Т.И., Вавилов Н.В. Опыт изучения микрофлоры и белков эякулята при разной эхоскопической картине предстательной железы. Инфекция и иммунитет 2019; 9 (2): 347–353 / Godovalov A.P., Danielyan T.Yu., Karpunina T.I., Vavilov N.V. Experience in studying the microflora and proteins of ejaculate with different echoscopic picture of the prostate gland. Russian Journal of Infection and Immunity 2019; 9 (2): 347–353 (in Russian).
  24. Осипович О.А., Годовалов А.П. К вопросу о роли воспалительных заболеваний в развитии бесплодия у женщин. Медицинский альманах 2016; 5 (45): 85–87 / Osipovich O.A., Godovalov A.P. To the matter of role of inflammatory diseases in development of women's sterility. Medical almanac 2016; 5 (45): 85–87 (in Russian).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The time of the LZHL reaction to the maximum during incubation of cells with cadaverine, min

Download (18KB)
3. Fig. 2. The maximum intensity of the LZHL reaction during incubation of leukocytes with cadaverine, RLU

Download (20KB)
4. Fig. 3. The area under the LZHL reaction curve during incubation of leukocytes with cadaverine, conl. units.

Download (19KB)

Copyright (c) 2024 Eco-Vector


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».