New-onset type ii diabetes mellitus in early diagnosis of pancreatic cancer: literature review

Cover Page

Cite item

Full Text

Abstract

The literature data on the connection between type 2 diabetes mellitus (DM) and pancreatic cancer (PC) were analyzed. Early detection of pancreatic cancer remains an unsolved problem of oncology because of absence of pathognomonic symptoms for this disease at the early stages, difficulties in visualizing changes in the pancreas as well as difficulties in differential diagnosis with benign tumors. Fifty nine articles in Russian and English were studied, and the data presented in literature regarding the connection between type 2 diabetes mellitus and early stages of pancreaticic cancer have been analyzed.Resectable pancreatic cancer makes up less than 15 % of the cases during initial medical examination. Currently, the existing methods of diagnostics do not allow solving the problem of early detection of pancreatic cancer – it dictates the need to search for a new marker that will improve the early diagnosis of this tumor. According to the results of many studies, there has been detected a connection between the new-onset type 2 diabetes mellitus and early stages of pancreatic cancer. Based on the data published by a number of authors, manifestation of the new-onset type 2 diabetes mellitus in patients over fifty (fasting blood glucose level ≥ 7 mmol/L, or a blood glucose sugar level ≥ 11,1 mmol/L after performing oral glucose tolerance test, or random blood glucose level ≥ 11,1 mmol/L with a typical hyperglycemia signs and symptoms) can serve as an early symptom of pancreatic cancer.

Thus, the new-onset type 2 diabetes mellitus in persons aged 50 years or older can potentially be used to identify a group of patients requiring a directional examination for the purpose of early detection of pancreatic cancer. Further studies on this problem could allow us to formulate a special program of early diagnostics of pancreatic cancer.

About the authors

P. A. Ponomarev

Russian Scientific Center of Radiology and Surgical Technologies named after Academician A.M. Granov

Author for correspondence.
Email: surgepon@gmail.com

surgeon, oncologist, postgraduate student, Department of Radiology, Surgery and Oncology

Russian Federation, St. Petersburg

V. E. Moiseenko

Russian Scientific Center of Radiology and Surgical Technologies named after Academician A.M. Granov; The First Pavlov State Medical University of St. Petersburg

Email: surgepon@gmail.com

Candidate of Medical Sciences, surgeon, oncologist of Surgery Unit № 2, Associate Professor of Department of Radiology, Surgery and Oncology

Russian Federation, St. Petersburg; St. Petersburg

A. V. Pavlovsky

Russian Scientific Center of Radiology and Surgical Technologies named after Academician A.M. Granov

Email: surgepon@gmail.com

MD, PhD, Professor of Department of Radiology, Surgery and Oncology, Chief Scientist of Surgery Unit № 2

Russian Federation, St. Petersburg

S. A. Popov

Russian Scientific Center of Radiology and Surgical Technologies named after Academician A.M. Granov

Email: surgepon@gmail.com

Candidate of Medical Sciences, surgeon, oncologist of Surgery Unit № 2

Russian Federation, St. Petersburg

A. S. Turlak

Russian Scientific Center of Radiology and Surgical Technologies named after Academician A.M. Granov

Email: surgepon@gmail.com

clinical resident, Department of Radiology, Surgery and Oncology

Russian Federation, St. Petersburg

D. A. Granov

Russian Scientific Center of Radiology and Surgical Technologies named after Academician A.M. Granov; The First Pavlov State Medical University of St. Petersburg

Email: surgepon@gmail.com

MD, PhD, Professor, Academician of RAS, Chief Scientist

Russian Federation, St. Petersburg; St. Petersburg

References

  1. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021; 3: 209–249.
  2. Kaprin A.D., Starinskiy V.V., Shakhzodova A.O. Malignant neoplasms in Russia in 2020 (morbidity and mortality) Moscow: MNIOI im. P.A. Gertsena − filial FGBU «NMITs radiologii» Minzdrava Rossii 2021; 252 (in Russian).
  3. Moiseenko V.E., Pavlovskiy A.V., Granov D.A., Kochorova L.V., Dodonova I.V., Khizha V.V., Yazenok A.V., Yakovenko T.V. Analysis of statistics of indicators of the population of St. Petersburg, detection of malignant neoplasms of the pancreas. Vestnik Rossiyskoy Voenno-meditsinskoy akademii 2021; 2: 155–164 (in Russian).
  4. Tsimmerman Ya.S. Pancreatic cancer: terra incognita in modern gastroenterology. Klinicheskaya meditsina 2015; 10: 5–13 (in Russian).
  5. Siegel R.L., Miller K.D., Jemal A. Cancer Statistics, 2017. CA Cancer J. Clin. 2017; 67: 7–30.
  6. Hidalgo M., Cascinu S., Kleeff J., Labianca R., Löhr J.M., Neoptolemos J., Real F.X., Van Laethem J.L., Heinemann V. Addressing the challenges of pancreatic cancer: future directions for improving outcomes. Pancreatology 2015; 1: 8–18.
  7. Pokataev I. A., Gladkov O. A., Zagaynov V. E., Kudashkin N. E., Lyadov V. K., Patyutko Yu. I., Podluzhnyy D. V., Tryakin A. A., Chernykh M. V. Practical recommendations for drug treatment of pancreatic cancer. Zlokachestvennye opukholi: Prakticheskie rekomendatsii RUSSCO #3s2 2020; 10.27 (in Russian).
  8. Kamisawa T., Wood L.D., Itoi T., Takaori K. Pancreatic cancer. Lancet 2016; 388: 73–85.
  9. Hart P.A., Chari S.T. Is Screening for Pancreatic Cancer in High-Risk Individuals One Step Closer or a Fool's Errand? Clin Gastroenterol. Hepatol. 2019; 17: 36–38.
  10. Patel N., Petrinic T., Silva M., Soonawalla Z., Reddy S., Gordon-Weeks A. The Diagnostic Accuracy of Mutant KRAS Detection from Pancreatic Secretions for the Diagnosis of Pancreatic Cancer: A Meta-Analysis. Cancers (Basel) 2020; 12: 2353.
  11. Poruk K.E., Gay D.Z., Brown K., Mulvihill J.D., Boucher K.M., Scaife C.L., Firpo M.A., Mulvihill S.J. The clinical utility of CA 19–9 in pancreatic adenocarcinoma: diagnostic and prognostic updates. Curr. Mol. Med. 2013; 13: 340–351.
  12. Kim J.E., Lee K.T., Lee J.K., Paik S.W., Rhee J.C., Choi K.W. Clinical usefulness of carbohydrate antigen 19–9 as a screening test for pancreatic cancer in an asymptomatic population. Journal of gastroenterology and hepatology 2004; 2: 182–186.
  13. Wu E., Zhou S., Bhat K., Ma Q. CA 19–9 and pancreatic cancer. Clin. Adv. Hematol. Oncol. 2013; 1: 53–55.
  14. Swords D.S., Firpo M.A., Scaife C.L., Mulvihill S.J. Biomarkers in pancreatic adenocarcinoma: current perspectives. Onco. Targets Ther. 2016; 9: 7459–7467.
  15. Khan M.A., Zubair H., Srivastava S.K., Singh S., Singh A.P. Insights into the Role of microRNAs in Pancreatic Cancer Pathogenesis: Potential for Diagnosis, Prognosis, and Therapy. Advances in Experimental Medicine and Biology 2015; 889: 71–87.
  16. Lee E.J., Gusev Y., Jiang J., Nuovo G.J., Lerner M.R., Frankel W.L., Morgan D.L., Postier R.G., Brackett D.J., Schmittgen T.D. Expression profiling identifies microRNA signature in pancreatic cancer. Int. J. Cancer. 2007; 120: 1046–1054.
  17. Bloomston M., Frankel W.L., Petrocca F., Volinia S., Alder H., Hagan J.P., Liu C.G., Bhatt D., Taccioli C., Croce C.M. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 2007; 297: 1901–1908.
  18. Conrad C., Fernández-Del Castillo C. Preoperative evaluation and management of the pancreatic head mass. J. Surg. Oncol. 2013; 1: 23–32.
  19. Ashida R., Tanaka S., Yamanaka H., Okagaki S., Nakao K., Fukuda J., Nakao M., Ioka T., Katayama K. The Role of Transabdominal Ultrasound in the Diagnosis of Early Stage Pancreatic Cancer: Review and Single-Center Experience. Diagnostics (Basel). 2018; 1: 2.
  20. Rösch T., Lorenz R., Braig C., Feuerbach S., Siewert J.R., Schusdziarra V., Classen M. Endoscopic ultrasound in pancreatic tumor diagnosis. Gastrointest Endosc. 1991; 3: 347–352.
  21. Gonzalo-Marin J., Vila J.J., Perez-Miranda M. Role of endoscopic ultrasound in the diagnosis of pancreatic cancer. World J. Gastrointest Oncol. 2014; 9: 360–368.
  22. Maev I.V., Kucheryavyy Yu.A. Diseases of the pancreas. Moscow: GEOTAR-Media 2009 (in Russian).
  23. Gangi A.; Malafa M. Klapman J. Endoscopic Ultrasound–Based Pancreatic Cancer Screening of High-Risk Individuals: A Prospective Observational Trial. Pancreas. 2018; 5: 586–591.
  24. Gangi S., Fletcher J.G., Nathan M.A., Christensen J.A., Harmsen W.S., Crownhart B.S., Chari S.T. Time interval between abnormalities seen on CT and the clinical diagnosis of pancreatic cancer: retrospective review of CT scans obtained before diagnosis. AJR Am. J. Roentgenol. 2004; 4: 897–903.
  25. US Preventive Services Task Force, Owens D.K., Davidson K.W., Krist A.H., Barry M.J., Cabana M., Caughey A.B., Curry S.J., Doubeni C.A., Epling J.W. Jr, Kubik M., Landefeld C.S., Mangione C.M., Pbert L., Silverstein M., Simon M.A., Tseng C.W., Wong J.B. Screening for Pancreatic Cancer: US Preventive Services Task Force Reaffirmation Recommendation Statement. JAMA 2019; 5: 438–444.
  26. Miura S., Takikawa T., Kikuta K., Hamada S., Kume K., Yoshida N., Tanaka Y., Matsumoto R., Ikeda M., Kataoka F., Sasaki A., Hatta W., Inoue J., Masamune A. Focal Parenchymal Atrophy of the Pancreas Is Frequently Observed on Pre-Diagnostic Computed Tomography in Patients with Pancreatic Cancer: A Case-Control Study. Diagnostics (Basel). 2021; 9: 1693.
  27. Costache M.I., Costache C.A., Dumitrescu C.I., Tica A.A., Popescu M., Baluta E.A., Anghel A.C., Saftoiu A., Dumitrescu D. Which is the Best Imaging Method in Pancreatic Adenocarcinoma Diagnosis and Staging – CT, MRI or EUS? Curr. Health Sci. J. 2017; 2: 132–136.
  28. De Souza A., Irfan K., Masud F., Saif M.W. Diabetes Type 2 and Pancreatic Cancer: A History Unfolding. JOP 2016; 2: 144–148.
  29. Li Y., Bian X., Wei S., He M., Yang Y. The relationship between pancreatic cancer and type 2 diabetes: cause and consequence. Cancer. Manag. Res. 2019; 11: 8257–8268.
  30. Li D., Tang H., Hassan M.M., Holly E.A., Bracci P.M., Silverman D.T. Diabetes and risk of pancreatic cancer: a pooled analysis of three large case-control studies. Cancer Causes Control. 2011; 2: 189–197.
  31. Li D. Diabetes and pancreatic cancer. Mol. Carcinog. 2012; 1: 64–74.
  32. Bergmann U., Funatomi H., Yokoyama M., Beger H.G., Korc M. Insulin-like growth factor I overexpression in human pancreatic cancer: evidence for autocrine and paracrine roles. Cancer Res. 1995; 10: 2007–2011.
  33. Suzuki H., Li Y., Dong X., Hassan M.M., Abbruzzese J.L., Li D. Effect of insulin-like growth factor gene polymorphisms alone or in interaction with diabetes on the risk of pancreatic cancer. Cancer Epidemiol Biomarkers Prev. 2008; 12: 3467–3473.
  34. Andersen D.K., Korc M., Petersen G.M., Eibl G., Li D., Rickels M.R., Chari S.T., Abbruzzese J.L. Diabetes, Pancreatogenic Diabetes, and Pancreatic Cancer. Diabetes. 2017; 5: 1103–1110.
  35. Ogihara T., Asano Т., Katagiri H., Sakoda H., Anai M., Shojima N., Ono H., Fujishiro M., Kushiyama A., Fukushima Y., Kikuchi M., Noguchi N., Aburatani H., Gotoh Y., Komuro I., Fujita T. Oxidative stress induces insulin resistance by activating the nuclear factor-? B pathway and disrupting normal subcellular distribution of phosphatidylinositol 3-kinase. Diabetologia 2004; 47: 794–805.
  36. Bastard J.P., Maachi M., Lagathu C., Kim M.J., Caron M., Vidal H., Capeau J., Feve B. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur. Cytokine Netw. 2006; 1: 4–12.
  37. Gopaul N.K., Manraj M.D., Hébé A., Lee Kwai Yan S., Johnston A., Carrier M.J., Anggård E.E. Oxidative stress could precede endothelial dysfunction and insulin resistance in Indian Mauritians with impaired glucose metabolism. Diabetologia 2001; 6: 706–712.
  38. Ohmura E., Okada M., Onoda N., Kamiya Y., Murakami H., Tsushima T., Shizume K. Insulin-like growth factor I and transforming growth factor alpha as autocrine growth factors in human pancreatic cancer cell growth. Cancer Res. 1990; 50: 103–107.
  39. Stoeltzing O., Liu W., Reinmuth N., Fan F., Parikh AA, Bucana C.D., Evans D.B., Semenza G.L., Ellis L.M. Regulation of hypoxia-inducible factor-1alpha, vascular endothelial growth factor, and angiogenesis by an insulin-like growth factor-I receptor autocrine loop in human pancreatic cancer. Am. J. Pathol. 2003; 3: 1001–1011.
  40. Zeng H., Datta K., Neid M., Li J., Parangi S., Mukhopadhyay D. Requirement of different signaling pathways mediated by insulin-like growth factor-I receptor for proliferation, invasion, and VPF/VEGF expression in a pancreatic carcinoma cell line. Biochem. Biophys. Res. Commun. 2003; 1: 46–55.
  41. Pollak M. Insulin and insulin-like growth factor signalling in neoplasia. Nat. Rev. Cancer. 2008; 12: 915–28.
  42. Stolzenberg-Solomon R.Z., Limburg P., Pollak M., Taylor PR, Virtamo J., Albanes D. Insulin-like growth factor (IGF)-1, IGF-binding protein-3, and pancreatic cancer in male smokers. Cancer Epidemiol. Biomarkers Prev. 2004; 3: 438–44.
  43. Wolpin B.M., Michaud D.S., Giovannucci E.L., Schernhammer E.S., Stampfer M.J., Manson J.E., Cochrane B.B., Rohan T.E., Ma J., Pollak M.N., Fuchs C.S. Circulating insulin-like growth factor axis and the risk of pancreatic cancer in four prospective cohorts. Br. J. Cancer. 2007; 1: 98–104.
  44. Wolpin B.M., Michaud D.S., Giovannucci E.L., Schernhammer E.S., Stampfer M.J., Manson J.E., Cochrane B.B., Rohan T.E., Ma J., Pollak M.N., Fuchs C.S. Circulating insulin-like growth factor binding protein-1 and the risk of pancreatic cancer. Cancer Res. 2007; 16: 7923–7928.
  45. Pfeffer F., Koczan D., Adam U., Benz S., von Dobschuetz E., Prall F., Nizze H., Thiesen H.J., Hopt U.T., Löbler M. Expression of connexin26 in islets of Langerhans is associated with impaired glucose tolerance in patients with pancreatic adenocarcinoma. Pancreas. 2004; 29: 284–290.
  46. Permert J., Larsson J., Fruin A.B., Tatemoto K., Herrington M.K, von Schenck H., Adrian T.E. Islet hormone secretion in pancreatic cancer patients with diabetes. Pancreas. 1997; 15: 60–68.
  47. Permert J., Larsson J., Westermark G.T., Herrington M.K., Christmanson L., Pour P.M., Westermark P., Adrian T.E. Islet amyloid polypeptide in patients with pancreatic cancer and diabetes. N. Engl. J. Med. 1994; 330: 313–318.
  48. Chari S.T., Klee G.G., Miller L.J., Raimondo M., DiMagno E.P. Islet amyloid polypeptide is not a satisfactory marker for detecting pancreatic cancer. Gastroenterology 2001; 121: 640–645.
  49. Aggarwal G., Rabe K.G., Petersen G.M., Chari S.T. New-onset diabetes in pancreatic cancer: a study in the primary care setting. Pancreatology 2012; 12: 156–161.
  50. American Diabetes Association. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2020. Diabetes care. 2020; 43: 14–31.
  51. Samuels T.A., Cohen D., Brancati F.L., Coresh J., Kao W.H. Delayed diagnosis of incident type 2 diabetes mellitus in the ARIC study. Am. J. Manag. Care. 2006; 12: 717–724.
  52. Everhart J., Wright D. Diabetes mellitus as a risk factor for pancreatic cancer. A meta-analysis. JAMA 1995; 273: 1605–1609.
  53. Huxley R., Ansary-Moghaddam A., Berrington de González A., Barzi F., Woodward M. Type-II diabetes and pancreatic cancer: a meta-analysis of 36 studies. Br. J. Cancer. 2005; 92: 2076–2083.
  54. Gupta S., Vittinghoff E., Bertenthal D., Corley D., Shen H., Walter L.C., McQuaid K. New-onset diabetes and pancreatic cancer. Clin. Gastroenterol. Hepatol. 2006; 4: 1366–1372.
  55. Chari S.T., Leibson C.L., Rabe K.G., Timmons L.J., Ransom J., de Andrade M., Petersen G.M. Pancreatic cancer-associated diabetes mellitus: prevalence and temporal association with diagnosis of cancer. Gastroenterology 2008; 134: 95–101.
  56. Pannala R., Leirness J.B., Bamlet W.R., Basu A., Petersen G.M., Chari S.T. Prevalence and clinical profile of pancreatic cancer-associated diabetes mellitus. Gastroenterology 2008; 134: 981–987.
  57. Kashintsev A.A., Kokhanenko N.Yu. Relationship between diabetes mellitus and pancreatic cancer. Sibirskiy onkologicheskiy zhurnal 2013; 4: 36–39 (in Russian).
  58. Pelaez-Luna M., Takahashi N., Fletcher J.G., Chari S.T. Resectability of presymptomatic pancreatic cancer and its relationship to onset of diabetes: a retrospective review of CT scans and fasting glucose values prior to diagnosis. Am. J. Gastroenterol 2007; 102: 2157–2163.
  59. Sharma A., Kandlakunta H., Nagpal S.J.S., Feng Z., Hoos W., Petersen G.M., Chari S.T. Model to Determine Risk of Pancreatic Cancer in Patients With New-Onset Diabetes. Gastroenterology 2018; 155: 730–739.

Copyright (c) 2022 Ponomarev P.A., Moiseenko V.E., Pavlovsky A.V., Popov S.A., Turlak A.S., Granov D.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies