Basic pulse sequences in the diagnosis of abdominal pathology

Cover Image

Cite item

Abstract

Magnetic resonance imaging is used for diagnosing abdominal and retroperitoneal space pathology, which allows visualizing focal or diffuse lesions in the parenchymal and hollow viscera with high diagnostic accuracy and reproducibility. Magnetic resonance imaging has advantages over computed tomography in the sensitivity and specificity of determining pathological changes in parenchymal organs, bile ducts and ducts of the pancreas, peritoneum, and retroperitoneal space.

The multiparametric protocol provides information about the mutual topography of organs and their structure and the functional state of tissues. This allows to move from structural to functional evaluation. In most cases, the standard abdominal protocol includes T1-weighted images, T2-weighted images, diffusion-weighted images, and magnetic resonance cholangiopancreatography. Depending on the objectives and patient’s condition, this protocol can be significantly reduced or supplemented.

Existing technical developments and achievements make it possible to simplify the scanning process and reduce the time for obtaining images while increasing the reproducibility of techniques in different healthcare institutions.

About the authors

Egor M. Syrkashev

Moscow Center for Diagnostics and Telemedicine; National Medical Research Center for Obstetrics, Gynecology and Perinatology

Author for correspondence.
Email: egorsrkshv@mail.ru
ORCID iD: 0000-0003-4043-907X
SPIN-code: 1901-5364

MD, Cand Sci (Med.)

Russian Federation, Moscow; Moscow

Faina Z. Kadyrberdieva

National Medical Research Center for Obstetrics, Gynecology and Perinatology

Email: k.faina1992@mail.ru
ORCID iD: 0009-0004-7787-3413

MD, Cand Sci (Med.)

Russian Federation, Moscow

Liya R. Abuladze

Moscow Center for Diagnostics and Telemedicine

Email: AbuladzeLR@zdrav.mos.ru
ORCID iD: 0000-0001-6745-1672
SPIN-code: 8640-9989

MD

Russian Federation, Moscow

Dmitriy S. Semenov

Moscow Center for Diagnostics and Telemedicine

Email: semenovds4@zdrav.mos.ru
ORCID iD: 0000-0002-4293-2514
SPIN-code: 2278-7290
Russian Federation, Moscow

Ekaterina G. Privalova

Moscow Center for Diagnostics and Telemedicine

Email: e-privalova@mail.ru
ORCID iD: 0000-0002-9851-9390
SPIN-code: 6546-5135

MD, Dr.Sci. (Med.)

Russian Federation, Moscow

References

  1. Hussain SM, Sorrell MF. Liver MRI: Correlation with other imaging modalities and histopathology, second edition. Springer; 2015. doi: 10.1007/978-3-319-06004-0
  2. Runge VM, Clanton JA, Partain CL, James AE. Respiratory gating in magnetic resonance imaging at 0.5 Tesla. Radiology. 1984;151(2):521–523. doi: 10.1148/radiology.151.2.6709928
  3. Bailes DR, Gilderdale DJ, Bydder GM, et al. Respiratory ordered phase encoding (ROPE): A method for reducing respiratory motion artefacts in MR imaging. J Comput Assist Tomogr. 1985;9(4):835–838.
  4. American College of Radiology [online]. ACR-SAR-SPR practice parameter for the performance of magnetic resonance (MR) Enterography. Available from: https://www.acr.org/-/media/ACR/Files/Practice-Parameters/MR-Enterog.pdf. Accessed: 17.01.2023.
  5. Semelka RC, Kelekis NL, Thomasson D, et al. HASTE MR imaging: Description of technique and preliminary results in the abdomen. J Mag Reson Imaging. 1996;6(4):698–699. doi: 10.1002/jmri.1880060420
  6. Rofsky NM, Lee VS, Laub G, et al. Abdominal MR imaging with a volumetric interpolated breath-hold examination. Radiology. 1999;212(3):876–884. doi: 10.1148/radiology.212.3.r99se34876
  7. Syrkashev EM, Solopova A, Kulabukhova EA. Magnetic resonance imaging in the diagnosis of peritoneal carcinomatosis indisseminated ovarian cancer. Obstetrics Gynecology. 2020;(9):38–47. doi: 10.18565/aig.2020.9.38-47
  8. Vanderveen KA, Hussain HK. Magnetic resonance imaging of cholangiocarcinoma. Cancer Imaging. 2004;4(2):104–115. doi: 10.1102/1470-7330.2004.0018
  9. Kilcoyne A, Kaplan JL, Gee MS. Inflammatory bowel disease imaging: Current practice and future directions. World J Gastroenterol. 2016;22(3):917–932. doi: 10.3748/wjg.v22.i3.917
  10. Koh DM, Collins DJ. Diffusion-weighted MRI in the body: Applications and challenges in oncology. AJR Am J Roentgenol. 2007;188(6):1622–1635. doi: 10.2214/AJR.06.1403
  11. Abuladze LR, Semenov DS, Panina OY, Vasilev YA. Optimized biparametric magnetic resonance imaging protocol for prostate cancer detection. Digit Diagnostics. 2022;3(3):166–177. doi: 10.17816/dd108484
  12. Thoeny HC, De Keyzer F. Extracranial applications of diffusion-weighted magnetic resonance imaging. Eur Radiol. 2007;17(6):1385–1393. doi: 10.1007/s00330-006-0547-0
  13. Charles-Edwards EM, De Souza NM. Diffusion-weighted magnetic resonance imaging and its application to cancer. Cancer Imaging. 2006;6(1):135–143. doi: 10.1102/1470-7330.2006.0021
  14. Kele PG, van der Jagt EJ. Diffusion weighted imaging in the liver. World J Gastroenterol. 2010;16(13):1567–1576. doi: 10.3748/wjg.v16.i13.1567
  15. Monticciolo L, Podberesky DJ, Pollack MS, et al. ACR-SAR-SPR practice parameter for the performance of magnetic resonance imaging (MRI) of the abdomen (Excluding the Liver). Semantic Scholar; 2015. Available from: https://www.semanticscholar.org/paper/ACR-%E2%80%93-SAR-%E2%80%93-SPR-PRACTICE-PARAMETER-FOR-THE-OF-(-MRI-Monticciolo-Podberesky/7dc9771a1b5aaec215c99fd74ab5e659738cf4fd. Accessed: 17.01.2023.
  16. Taron J, Martirosian P, Erb M, et al. Simultaneous multislice diffusion-weighted MRI of the liver: Analysis of different breathing schemes in comparison to standard sequences. J Magn Reson Imaging. 2016;44(4):865–879. doi: 10.1002/jmri.25204

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Liver magnetic resonance imaging with a hepatospecific contrast agent. A hepatocellular carcinoma nodule (arrows): a T2-weighted image: a hyperintense nodule is visualized; b Т1-weighted image, arterial phase: a ring-like contrast uptake is visualized; c Т1-weighted image, hepatospecific phase, 20 min after contrast agent injection.

Download (117KB)
3. Figure 2. Abdominal magnetic resonance imaging, simple renal cortical cysts (arrows): а a diffusion-weighted image; b map of the apparent diffusion coefficient. False restricted diffusion.

Download (143KB)
4. Figure 3. Abdominal magnetic resonance imaging, secondary hepatic lesions (arrows): а a diffusion-weighted image; b map of the apparent diffusion coefficient. True restricted diffusion.

Download (212KB)
5. Figure 4. Abdominal magnetic resonance imaging, encapsulated liver mass (abscess) (arrows): а Т2-weighted image; b apparent diffusion coefficient; с map of apparent diffusion coefficient.

Download (99KB)
6. Figure 5. Single-shot fast spin-echo mode: hepatocellular carcinoma with inferior vena cava invasion (yellow arrow) and tense ascites (green arrow): а coronal plane; b axial plane.

Download (332KB)
7. Figure 6. Abdominal computed tomography, axial plane (а): a right adrenal mass of nonuniform density is visualized (arrow); abdominal magnetic resonance imaging (b, с), in-phase (b) and opposed-phase (с): a typical signal loss from the adenoma fat component in the opposed-phase is detected (arrows).

Download (207KB)
8. Figure 7. Abdominal magnetic resonance imaging, pancreatic lipomatosis (arrows): а in-phase, b opposed-phase. In the opposite phase, a signal loss from the pancreas with a normal signal from the liver is detected.

Download (212KB)
9. Figure 8. Contrast-enhanced magnetic resonance imaging of the abdominal aorta and its branches. Extravascular compression of the celiac trunk by crus diaphragm (arrows): а SSFE; b contrast-enhanced 3D mode.

Download (138KB)
10. Figure 9. Comparison of standard (STD DWI) and simultaneous (SMS DWI) multislice diffusion-weighted images with free breathing and respiratory triggering using various b-factors (50, 400, and 800 s/mm2) and corresponding apparent diffusion coefficients. The mean scan time was 10:30 min (5:56–18:13) for STD DWIs and 3:29 min (2:19–4:27) for SMS-DWIs [16].

Download (359KB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies