Nonparametric Algorithms for Estimating the States of Natural Objects


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Modifications of a nonparametric pattern recognition algorithm corresponding to the maximum likelihood criterion with additional decision functions are considered. The synthesis of the proposed algorithms is based on the analysis of the ratios of the estimates of the probability density distributions of random variables in classes and their functionals with input thresholds. The choice of the thresholds is determined by specific features of the classification problem. The results obtained are applied for assessing the states of forest tracts on the basis of remote sensing data.

作者简介

A. Lapko

Institute of Computational Modeling, Siberian Branch; Reshetnev Siberian State University of Science and Technology

编辑信件的主要联系方式.
Email: lapko@icm.krasn.ru
俄罗斯联邦, Academgorodok-50, 44, Krasnoyarsk, 660036; pr. Krasnoyarskii rabochii 31, Krasnoyarsk, 660037

V. Lapko

Institute of Computational Modeling, Siberian Branch; Reshetnev Siberian State University of Science and Technology

Email: lapko@icm.krasn.ru
俄罗斯联邦, Academgorodok-50, 44, Krasnoyarsk, 660036; pr. Krasnoyarskii rabochii 31, Krasnoyarsk, 660037

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2018