Nonparametric Algorithms for Estimating the States of Natural Objects


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Modifications of a nonparametric pattern recognition algorithm corresponding to the maximum likelihood criterion with additional decision functions are considered. The synthesis of the proposed algorithms is based on the analysis of the ratios of the estimates of the probability density distributions of random variables in classes and their functionals with input thresholds. The choice of the thresholds is determined by specific features of the classification problem. The results obtained are applied for assessing the states of forest tracts on the basis of remote sensing data.

Sobre autores

A. Lapko

Institute of Computational Modeling, Siberian Branch; Reshetnev Siberian State University of Science and Technology

Autor responsável pela correspondência
Email: lapko@icm.krasn.ru
Rússia, Academgorodok-50, 44, Krasnoyarsk, 660036; pr. Krasnoyarskii rabochii 31, Krasnoyarsk, 660037

V. Lapko

Institute of Computational Modeling, Siberian Branch; Reshetnev Siberian State University of Science and Technology

Email: lapko@icm.krasn.ru
Rússia, Academgorodok-50, 44, Krasnoyarsk, 660036; pr. Krasnoyarskii rabochii 31, Krasnoyarsk, 660037

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2018