Nonparametric Algorithms for Estimating the States of Natural Objects
- Авторлар: Lapko A.V.1,2, Lapko V.A.1,2
-
Мекемелер:
- Institute of Computational Modeling, Siberian Branch
- Reshetnev Siberian State University of Science and Technology
- Шығарылым: Том 54, № 5 (2018)
- Беттер: 451-456
- Бөлім: Analysis and Synthesis of Signals and Images
- URL: https://journals.rcsi.science/8756-6990/article/view/212557
- DOI: https://doi.org/10.3103/S8756699018050047
- ID: 212557
Дәйексөз келтіру
Аннотация
Modifications of a nonparametric pattern recognition algorithm corresponding to the maximum likelihood criterion with additional decision functions are considered. The synthesis of the proposed algorithms is based on the analysis of the ratios of the estimates of the probability density distributions of random variables in classes and their functionals with input thresholds. The choice of the thresholds is determined by specific features of the classification problem. The results obtained are applied for assessing the states of forest tracts on the basis of remote sensing data.
Авторлар туралы
A. Lapko
Institute of Computational Modeling, Siberian Branch; Reshetnev Siberian State University of Science and Technology
Хат алмасуға жауапты Автор.
Email: lapko@icm.krasn.ru
Ресей, Academgorodok-50, 44, Krasnoyarsk, 660036; pr. Krasnoyarskii rabochii 31, Krasnoyarsk, 660037
V. Lapko
Institute of Computational Modeling, Siberian Branch; Reshetnev Siberian State University of Science and Technology
Email: lapko@icm.krasn.ru
Ресей, Academgorodok-50, 44, Krasnoyarsk, 660036; pr. Krasnoyarskii rabochii 31, Krasnoyarsk, 660037
Қосымша файлдар
