Vol 30, No 151 (2025)

Original articles

Existence of a coincidence point in a critical case when the covering constant and the Lipschitz constant are equal

ARUTYUNOV A.V., VASYANIN O.A.

Abstract

We consider two mappings acting between metric spaces and such that one of them is covering and the other satisfies the enhanced Lipschitz property. It is assumed here that the covering constant and the Lipschitz constant of these mappings are equal. We prove the result of the existence of a coincidence point of single-valued mappings in the case when the series of iterations of the function that provides execution of the enhanced Lipschitz property converges. We prove the similar result for set-valued mappings. We provide examples of functions for which the series of their iterations converges or diverges.

Russian Universities Reports. Mathematics. 2025;30(151):209-217
pages 209-217 views

On sufficient conditions of the asymptotic stability for equilibria of difference equations

ZHUKOVSKAYA Z.T.

Abstract

The paper considers nonlinear autonomous first-order
difference systems in real finite-dimensional spaces.  For these systems, we study
the asymptotic stability of equilibria. The classical sufficient conditions for asymptotic stability of an equilibrium for difference equation generated by a smooth mapping $f$
are as follows. If the spectral radius of the first derivative of the mapping $f$ at the given equilibrium point is strictly less than one, then this equilibrium point is asymptotically stable. In the present paper, new sufficient conditions for asymptotic stability of the equilibrium are given. The obtained conditions are also applicable to some mappings for which the spectral radius mentioned above is equal to one. These conditions are as follows. There exists a punctured neighborhood of the given equilibrium point such that the mapping defining the difference equation is locally contractive around each point of this neighborhood.
We present an example in which the spectral radius  mentioned above equals one,
however, all the assumptions of the obtained stability theorem are fulfilled.
It is shown that the known stability sufficient conditions follow from the obtained results.
An important feature of our stability sufficient conditions is that they are applicable to difference equations generated by continuous non-smooth mappings.

Russian Universities Reports. Mathematics. 2025;30(151):218-225
pages 218-225 views

Some topological properties of $f$-quasimetric~spaces

ZHUKOVSKIY E.S., ZHUKOVSKAYA T.V.

Abstract

The properties of the $f$–quasimetric space $(X,\rho)$ are studied. In a space as such, the distance $\rho$  satisfies the identity axiom and the generalized triangle inequality: $\rho(x,z) \leq f(\rho(x,y),\rho(y,z))$ for any $x,y,z\in X.$ Here the function $f$ is positive for positive arguments, continuous at the point $(0,0)$, and $f(0,0)=0.$ The symmetry of the distance is not assumed. The topology on $X$ generated by the distance $\rho$ is defined in the standard way. The properties of convergent sequences and sequentially compact sets are studied. Conditions are obtained under which the convergence in itself (mutual convergence) is necessary for the convergence of a sequence. The relationship between the rates of convergence of a fundamental sequence and its convergence in itself is considered. The concept of a sequentially precompact set is introduced. Conditions are obtained under which the closure of a sequentially precompact set is sequentially compact.

Russian Universities Reports. Mathematics. 2025;30(151):226-237
pages 226-237 views

Estimates in the class of analytical functions related to the Cassini oval and some of their applications

MAIYER F.F., TASTANOV M.G., UTEMISSOVA A.A., BERDENOVA G.Z.

Abstract

In this article, we introduce and study a class  $\mathcal{P}_n(\varphi_\lambda)$ of functions $\varphi(z) = 1 + c_n z^{n} + c_{n+1} z^{n+1} + \ldots,$ $n\geq1,$ analytic in the open unit disk $E,$ subordinate to the function  $\varphi_\lambda(z)=1+{(1-\lambda)z}/{(1-\lambda z^2)},$  $0\le\lambda<1.$ From a geometric point of view, this means that the set of values of the function $\varphi(z)$ is contained within the region $\varphi_\lambda(E)$ bounded by the Cassini oval.
The properties of the subordination majorant are investigated $\varphi_\lambda(z).$ Based on this, relying on the method of subordination of analytical functions, in the class  $\mathcal{P}_n(\varphi_\lambda),$ precise estimates are established for $\mathrm{Re}\, \varphi(z),$ $\left|\varphi(z)\right|,$ and $\left|{z\varphi'(z)}/{\varphi(z)}\right|,$  leading to one of the classical results in a particular case.
The application of these estimates to the study of extreme properties of some classes of analytical functions $f(z)$ of the form $f(z) = z + a_{n+1}z^{n+1} + a_{n+2}z^{n+2} + \ldots,$ $n\geq 1$ is considered. In particular, theorems of growth, covering, and radii of convexity are established for one class of starlike functions which is constructed by using the function $\varphi_\lambda(z)$ and generalizes the well-known subclass of starlike functions of R.~Singh. Applications of the obtained results to the study of some classes of close-to-starlike and doubly close-to-starlike functions related to the function  $\varphi_\lambda(z)$ are also given. In particular, in these classes, growth theorems are established and radii of starlikeness are found. All obtained results are accurate, represent new original results as well as some generalizations of known results.

Russian Universities Reports. Mathematics. 2025;30(151):238-254
pages 238-254 views

Problems of optimal periodic resource harvesting for population models described by difference equations

RODINA L.I., HAMMADI A.H., CHERNIKOVA A.V.

Abstract

We consider models of homogeneous or structured (by type, age, or other charac\-te\-ris\-tic) populations, the dynamics of which, in the absence of exploitation, is given by a system of difference equations
$x(k+1) = F\big(k, x(k)\big),$
where $x(k) = \big(x_1(k), \ldots, x_n(k)\big),$ $x_i(k),$\linebreak $i=1,\ldots,n$ is the amount of the $i$-th type or age class of the population at a time\linebreak $k=0,1,2,\ldots;$ $F(k,x)=\bigl(F_1(k,x), \ldots, F_n(k,x)\bigr),$ $F_i(k,x)$ are real functions that are defined and continuous on the set$\mathbb{R}^n_+ \doteq\big\{x\in\mathbb{R}^n : x_1\geqslant0, \ldots, x_n\geqslant0\big\}.$

It is assumed that at times $k=1, 2, \ldots$ the population is exposed to harvesting $u(k)=(u_1(k),\ldots,u_n(k))\in[0, 1]^n.$ Then the model of the exploited population is investigated, given by a system of difference equations
<br/>X(k+1)=F\bigl(k,(1-u(k))X(k)\bigr),  k=1,2,,<br/>
X(k+1) = F\bigl(k,(1-u(k))X(k)\bigr), \quad k=1, 2, \ldots,

where $X(k)=\big(X_1(k),\ldots,X_n(k)\big),$ $(1-u(k))X(k)=\big((1-u_1(k))X_1(k),\ldots,(1-u_n(k))X_n(k)\big),$ $X_i(k)$ and
$(1-u_i(k))X_i(k)$ is the amount of the resource of the $i$ type before and after harvesting at the time $k$ respectively, $i=1,\ldots,n.$

The problem of optimal harvesting of a renewable resources for an unlimited period of time under periodic operation mode, in which the highest values of collection characteristics are achieved, is investigated. The first of these characteristics is the average time profit given by the limit at $k\to\infty$ of the arithmetic mean of the cost of the resource over $k$ harvesting. Another characteristic is the harvesting effciency equal to the limit at $k\to\infty$ of the ratio of the cost of the resource gathered in $k$ harvestings to the amount of applied control (collection efforts). The results of the work are illustrated by examples of a homogeneous exploited population, given by a discrete logistic equation, and a structured population of two species.

Russian Universities Reports. Mathematics. 2025;30(151):255-266
pages 255-266 views

On the dependence of a fixed point on a parameter\\ in $(q_1, q_2)$-quasimetric spaces

SENGUPTA R.

Abstract

In the paper, we investigate the problem of continuous dependence of fixed points of contractive mappings in $(q_{1}, q_{2})$-quasimetric spaces on a parameter. We study equations of the form $ x = F(x, p)$ where $x \in X$ is the unknown variable in a complete $(q_{1}, q_{2})$-quasimetric space $X,$ the parameter $p$ lies in a given topological space $P,$ and $F : X \times P \to X$ is a prescribed mapping. It is assumed that $F$ is contractive in the variable $x.$

Using the classical existence and uniqueness results for fixed points of contractive mappings in complete $(q_{1}, q_{2})$-quasimetric spaces, we derive sufficient conditions ensuring that the mapping assigning to each parameter $p\! \in\! P$ the corresponding solution $x(p)$\! of the equation is continuous. As a corollary, we establish continuity of $x(p)$ in the case where $X$ is a complete metric space.

We further consider the situation where the parameter space $P$ itself carries the structure of a $(q_{1}, q_{2})$-quasimetric space. In this context, sufficient conditions are obtained guaranteeing that the solution map $x(p)$ is Lipschitz continuous, together with an explicit estimate for its Lipschitz constant. As a consequence, we present a corollary for the case when $X$ is a complete metric space and $P$ is a metric space.

Russian Universities Reports. Mathematics. 2025;30(151):267-274
pages 267-274 views

Perturbation method and regularization of the Lagrange principle in a nonlinear optimal control problem with pointwise state equality-constraint

SUMIN M.I.

Abstract

The regularization of the Lagrange principle (LP) and the Kuhn-Tucker theorem (KTT) in a non-differential form is considered in a nonlinear (non-convex) optimal control problem for a system of ordinary differential equations with a pointwise state equality constraint. The existence of a solution to the problem is not assumed a priori. The equality constraint contains an additive parameter, which makes it possible to use the "nonlinear version" of the perturbation method to study the problem. The main purpose of the regularized LP and KTT is to stably generate generalized minimizing sequences (GMS) in the problem under consideration. They can be interpreted as GMS-forming (regularizing) operators that associate with each set of initial data of the problem a subminimal (minimal) of its regular augmented Lagrangian (AL) functional corresponding to this set, the dual variable in which is generated in accordance with the Tikhonov stabilization procedure of the dual problem. The construction of the AL is completely determined by the form of the "nonlinear" subdifferentials (proximal subgradient, Frechet subdifferential) of the lower semicontinuous function of values as a function of the problem parameter. Regularized LP and KTT "overcome" the properties of ill-posedness of classical analogs, thus giving a theoretical basis for creating stable methods for solving nonlinear optimal control problems. In the particular case when the problem is regular in the sense of the existence of a generalized Kuhn-Tucker vector in it, and its initial data depend affinely on the control, the limit transition in the relations of the regularized KTT leads to optimality conditions in the form of the corresponding non-differential KTT and Pontryagin's maximum principle.

Russian Universities Reports. Mathematics. 2025;30(151):275-304
pages 275-304 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».