Some topological properties of $f$-quasimetric~spaces

Cover Page

Cite item

Abstract

The properties of the $f$–quasimetric space $(X,\rho)$ are studied. In a space as such, the distance $\rho$  satisfies the identity axiom and the generalized triangle inequality: $\rho(x,z) \leq f(\rho(x,y),\rho(y,z))$ for any $x,y,z\in X.$ Here the function $f$ is positive for positive arguments, continuous at the point $(0,0)$, and $f(0,0)=0.$ The symmetry of the distance is not assumed. The topology on $X$ generated by the distance $\rho$ is defined in the standard way. The properties of convergent sequences and sequentially compact sets are studied. Conditions are obtained under which the convergence in itself (mutual convergence) is necessary for the convergence of a sequence. The relationship between the rates of convergence of a fundamental sequence and its convergence in itself is considered. The concept of a sequentially precompact set is introduced. Conditions are obtained under which the closure of a sequentially precompact set is sequentially compact.

About the authors

Evgeny S. ZHUKOVSKIY

Derzhavin Tambov State University

Author for correspondence.
Email: zukovskys@mail.ru
ORCID iD: 0000-0003-4460-7608

Doctor of Physical and Mathematical Sciences, Professor, Director of the Scientific and Educational Center “Fundamental Mathematical Research”; Professor of Functional Analysis Department

Russian Federation, 33 Internatsionalnaya St., Tambov 392000, Russian Federation

Tatyana V. ZHUKOVSKAYA

Derzhavin Tambov State University

Email: t_zhukovskaia@mail.ru
ORCID iD: 0000-0003-4374-4336

Candidate of Physics and Mathematics, Associate Professor of the Higher Mathematics Department

Russian Federation, 33 Internatsionalnaya St., Tambov 392000, Russian Federation

References

  1. A.V. Arutyunov, A.V. Greshnov, L.V. Lokoutsievskii, K.V. Storozhuk, "Topological and geometrical properties of spaces with symmetric and nonsymmetric f-quasimetrics", Topology Appl., 221 (2017), 178-194.
  2. A.V. Arutyunov, A.V. Greshnov, "(q_1,q_2)-Quasimetric spaces. Covering mappings and coincidence points. A review of the results", Fixed Point Theory, 23:2 (2022), 473-486.
  3. M.M. Deza, E. Deza, Encyclopedia of Distances, Springer-Verlag, Berlin Heidelberg, 2013.
  4. A.V. Arutyunov, A.V. Greshnov, "Theory of (q_1,q_2)-quasimetric spaces and coincidence points", Doklady Mathematics, 94:1 (2016), 434-437.
  5. A.V. Greshnov, "About estimates of stability of contraction mappings on the first Heisenberg group in the fixed point theorem", Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 30:149 (2025), 15-27 (In Russian).
  6. E.S. Zhukovskiy, "Geometric progressions in distance spaces; applications to fixed points and coincidence points", Sb. Math., 214:2 (2023), 246-272.
  7. E.S. Zhukovskiy, "The fixed points of contractions of f-quasimetric spaces", Siberian Math. J., 59:6 (2018), 1063-1072.
  8. A.V. Arutyunov, A.V. Greshnov, "(q_1,q_2)-Quasimetric spaces. Covering mappings and coincidence points", Izv. Math., 82:2 (2018), 245-272.
  9. T.N. Fomenko, "The existence of zeros of multivalued functionals, coincidence points, and fixed points in f-quasimetric spaces", Math. Notes, 110:4 (2021), 583-591.
  10. A.V. Arutyunov, S.E. Zhukovskiy, K.V. Storozhuk, "The structure of the set of local minima of functions in various spaces", Siberian Math. J., 60:3 (2019), 398-404.
  11. R. Sengupta, "Ekeland variational principle for quasimetric spaces", Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 28:143 (2023), 268-276 (In Russian).
  12. A.V. Arutyunov, A.V. Greshnov, "Coincidence points of multivalued mappings in (q_1,q_2)-quasimetric spaces", Doklady Mathematics, 96:2 (2017), 438-441.
  13. W. Merchela, "Inclusions with mappings acting from a metric space to a space with distance", Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 27:137 (2022), 27-36 (In Russian).
  14. E.S. Zhukovskiy, "Topological properties of spaces with a distance", Math. Notes, 117:2 (2025), 248-258.
  15. A.V. Greshnov, "Some problems of regularity of f-quasimetrics", Sib. Èlektron. Mat. Izv., 15 (2018), 355-361 (In Russian).
  16. D. Doitchinov, "On completeness in quasi-metric spaces", Topology Appl., 30:2 (1988), 127-148.
  17. R. Engelking, General Topology, State Scientific Publishing House, Warsaw, 1977.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).