On the dependence of a fixed point on a parameter\\ in $(q_1, q_2)$-quasimetric spaces

Cover Page

Cite item

Abstract

In the paper, we investigate the problem of continuous dependence of fixed points of contractive mappings in $(q_{1}, q_{2})$-quasimetric spaces on a parameter. We study equations of the form $ x = F(x, p)$ where $x \in X$ is the unknown variable in a complete $(q_{1}, q_{2})$-quasimetric space $X,$ the parameter $p$ lies in a given topological space $P,$ and $F : X \times P \to X$ is a prescribed mapping. It is assumed that $F$ is contractive in the variable $x.$

Using the classical existence and uniqueness results for fixed points of contractive mappings in complete $(q_{1}, q_{2})$-quasimetric spaces, we derive sufficient conditions ensuring that the mapping assigning to each parameter $p\! \in\! P$ the corresponding solution $x(p)$\! of the equation is continuous. As a corollary, we establish continuity of $x(p)$ in the case where $X$ is a complete metric space.

We further consider the situation where the parameter space $P$ itself carries the structure of a $(q_{1}, q_{2})$-quasimetric space. In this context, sufficient conditions are obtained guaranteeing that the solution map $x(p)$ is Lipschitz continuous, together with an explicit estimate for its Lipschitz constant. As a consequence, we present a corollary for the case when $X$ is a complete metric space and $P$ is a metric space.

About the authors

R. SENGUPTA

Artificial Intelligence Research Institute; Derzhavin Tambov State University

Author for correspondence.
Email: r.sengupta@skoltech.ru
ORCID iD: 0000-0001-9916-8177

Candidate of Physics and Mathematics, Senior Research Scientist; Researcher

Russian Federation, 6 Presnenskaya embankment, Business Complex “Empire”, Moscow 123317, Russian Federation; 33 Internatsionalnaya St., Tambov 392000, Russian Federation

References

  1. A.N. Kolmogorov, S.V. Fomin, Elements of the Theory of Functions and Functional Analysis, I, II, Dover Publications, Mineola, New York, 1957, 1961.
  2. A.V. Arutyunov, A.V. Greshnov, “Theory of (q_1,q_2)-quasimetric spaces and coincidence points”, Dokl. RAS, 469:5 (2016), 434–437.
  3. Z.T. Zhukovskaya, S.E. Zhukovskiy, R. Sengupta, “On exact triangle inequalities in (q_1,q_2)-quasimetric spaces”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 24:125 (2019), 33–38 (In Russian).
  4. A.V. Arutyunov, B.D. Gel’man, E.S. Zhukovskiy, S.E. Zhukovskiy, “Caristi-like condition. Existence of solutions to equations and minima of functions in metric spaces”, Fixed Point Theory, 20:1 (2019), 31–58.
  5. A.V. Arutyunov, V.A. de Oliveira, F.L. Pereira, E.S. Zhukovskiy, S.E. Zhukovskiy, “On the solvability of implicit differential inclusions”, Applicable Analysis, 94:1 (2015), 129–143.
  6. J. Caristi, “Fixed point theorems for mappings satisfying inwardness conditions”, Trans. Amer. Math. Soc., 215 (1976), 241–251.
  7. A. Granas, J. Dugundji, Fixed Point Theory, Springer–Verlag, New York, 2003.
  8. A.V. Arutyunov, E. R.Avakov, S.E. Zhukovskiy, “Stability Theorems for Estimating the Distance to a Set of Coincidence Points”, SIAM Journal on Optimization, 25:2 (2015), 807–828.
  9. M.V. Borzova, E.S. Zhukovskiy, N.Yu. Chernikova, “One estimate of fixed points and coincidence points of mappings of metric spaces”, Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki = Tambov University Reports. Series: Natural and Technical Sciences, 22:6 (2017), 1255–1260 (In Russian).
  10. A.V. Arutyunov, S.E. Zhukovskiy, N.G. Pavlova, “Equilibrium price as a coincidence point of two mappings”, Comput. Math. Math. Phys., 53:2 (2013), 158–169.
  11. A.V. Arutyunov, E.S. Zhukovskiy, S.E. Zhukovskiy, “Coincidence points principle for mappings in partially ordered spaces”, Topology and its Applications, 179:1 (2015), 13–33.
  12. A.V. Arutyunov, E.S. Zhukovskiy, S.E. Zhukovskiy, “Caristi-Like Condition and the Existence of Minima of Mappings in Partially Ordered Spaces”, Journal of Optimization Theory and Applications, 180:1 (2019), 48–61.
  13. R. Sengupta, “On fixed points of contraction maps acting in (q_1,q_2)-quasimetric spaces and geometric properties of these spaces”, Eurasian Math. J., 8:3 (2017), 70–76.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).