REDOX NANOSTRUCTURING OF BIPOROUS NICKEL (II) SINTERED USING A SPACE HOLDER

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Permeable metallic nickel and ceramic nickel-oxide materials with nanostructured surface and multilevel hierarchical porosity were created by cyclic redox post-treatment of biporous nickel (II) consolidated in the sintering-dissolution process. Additional levels of intraparticle porosity – Kirkendall pores and shrinkage nanopores – were formed during the stages of high-temperature oxidation in air and reduction in hydrogen, respectively.

Sobre autores

A. Gnedovets

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Autor responsável pela correspondência
Email: agg@imet.ac.ru
Russian, 119334, Moscow

V. Zelenskii

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: agg@imet.ac.ru
Russian, 119334, Moscow

V. Shustov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: agg@imet.ac.ru
Russian, 119334, Moscow

M. Alymov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: agg@imet.ac.ru
Russian, 119334, Moscow

Bibliografia

  1. Kirillov V.A., Fedorova Z.A., Danilova M.M., Zaikov-skii V.I., Kuzin N.A., Kuzmin V.A., Krieger T.A., Mescheryakov V.D. // Appl. Catal. A: General. 2011. V. 401. P. 170–175. https://doi.org/10.1016/j.apcata.2011.05.018
  2. Singh H., Saxena P., Puri Y.M. // CIRP J. Manuf. Sci. Technol. 2021. V. 33. P. 339–368. https://doi.org/10.1016/j.cirpj.2021.03.014
  3. Trogadas P., Ramani V., Strasser P., Fuller T.F., Coppens M.O. // Angew. Chem. Int. Ed. 2016. V. 55. P. 122–148. https://doi.org/10.1002/anie.201506394
  4. Alnarabiji M.S., Tantawi O., Ramli A., Zabidi N.A.M., Ghanem O.B., Abdullah B. // Renew. Sust. Energy Rev. 2019. V. 114. 109326. https://doi.org/10.1016/j.rser.2019.109326
  5. Schwieger W., Machoke A.G., Weissenberger T., Inayat A., Selvam T., Klumpp M., Inayat A. // Chem. Soc. Rev. 2016. V. 45. P. 3353–3376. https://doi.org/10.1039/C5CS00599J
  6. Stanev L., Kolev M., Drenchev B., Drenchev L. // J. Manuf. Sci. Eng. 2017. V. 139. P. 050802. https://doi.org/10.1115/1.4034440
  7. Гнедовец А.Г., Зеленский В.А., Анкудинов А.Б., Алымов М.И. // ДАН. 2019. Т. 484. № 4. С. 436–440. https://doi.org/10.31857/S0869-56524844436-440
  8. Gnedovets A.G., Zelensky V.A., Ankudinov A.B., Shus-tov V.S., Alymov M.I. // J. Phys.: Conf. Ser. 2021. V. 1942. P. 012019. https://doi.org/10.1088/1742-6596/1942/1/012019
  9. Atwater M.A. // Met. Powder Rep. 2019. V. 74. P. 251–254. https://doi.org/10.1016/j.mprp.2019.01.004
  10. Faes A., Hessler-Wyser A., Zryd A., Van herle J. // Membranes. 2012. V. 2. P. 585–664. https://doi.org/10.3390/membranes2030585
  11. Nakamura R., Lee J.G., Mori H., Nakajima H. // Philos. Mag. 2008. V. 88. P. 257–264. https://doi.org/10.1080/14786430701819203
  12. Xiang W., Dong Z., Luo Y., Zhao J., Wang J.O., Ibrahim K., Zhan H., Yue W., Guo H. // Materials. 2019. V. 12. P. 805. https://doi.org/10.3390/ma12050805
  13. Wang Z., Yan Y., Chen Y., Han W., Liu M., Zhang Y., Xiong Y., Chen K., Lv Z., Liu M. // J. Mater. Chem. A. 2017. V. 5. P. 20709–20719. https://doi.org/10.1039/C7TA04293K
  14. Chen C., Wang S., Peng Z., Ao G. // J. Mater. Sci.: Mater. Electron. 2019. V. 30. P. 11231–11238. https://doi.org/10.1007/s10854-019-01468-w
  15. Kharchenko Y., Blikharskyy Z., Vira V., Vasyliv B., Podhurska V. // Appl. Nanosci. 2020. V. 10. P. 4535–4543. https://doi.org/10.1007/s13204-020-01391-1
  16. Kenel C., Geisendorfer N.R., Shah R.N., Dunand D.C. // Addit. Manuf. 2021. V. 37. 101637. https://doi.org/10.1016/j.addma.2020.101637
  17. Jae W., Song J., Hong J.J., Kim J. // J. Alloys Compd. 2019. V. 805. P. 957–966. https://doi.org/10.1016/j.jallcom.2019.07.192
  18. Zhu P., Wu Z., Zhao Y. // Scripta Mater. 2019. V. 172. P. 119–124. https://doi.org/10.1016/j.scriptamat.2019.07.019
  19. Xing F., Ta N., Zhong J., Zhong Y., Zhang L. // Solid State Ionics. 2019. V. 341. P. 115018. https://doi.org/10.1016/j.ssi.2019.115018
  20. Weinberg K., Böhme T., Müller W.H. // Comput. Mater. Sci. 2009. V. 45. P. 827–831. https://doi.org/10.1016/j.commatsci.2008.09.028
  21. Choi I.D., Matlock D.K., Olson D.L. // Mater. Sci. Eng., A. 1990. V. 124. P. L15–L18. https://doi.org/10.1016/0921-5093(90)90161-U

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (3MB)
4.

Baixar (1MB)
5.

Baixar (71KB)

Declaração de direitos autorais © А.Г. Гнедовец, В.А. Зеленский, В.С. Шустов, М.И. Алымов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies