REDOX NANOSTRUCTURING OF BIPOROUS NICKEL (II) SINTERED USING A SPACE HOLDER

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Permeable metallic nickel and ceramic nickel-oxide materials with nanostructured surface and multilevel hierarchical porosity were created by cyclic redox post-treatment of biporous nickel (II) consolidated in the sintering-dissolution process. Additional levels of intraparticle porosity – Kirkendall pores and shrinkage nanopores – were formed during the stages of high-temperature oxidation in air and reduction in hydrogen, respectively.

About the authors

A. G. Gnedovets

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Author for correspondence.
Email: agg@imet.ac.ru
Russian, 119334, Moscow

V. A. Zelenskii

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: agg@imet.ac.ru
Russian, 119334, Moscow

V. S. Shustov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: agg@imet.ac.ru
Russian, 119334, Moscow

M. I. Alymov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: agg@imet.ac.ru
Russian, 119334, Moscow

References

  1. Kirillov V.A., Fedorova Z.A., Danilova M.M., Zaikov-skii V.I., Kuzin N.A., Kuzmin V.A., Krieger T.A., Mescheryakov V.D. // Appl. Catal. A: General. 2011. V. 401. P. 170–175. https://doi.org/10.1016/j.apcata.2011.05.018
  2. Singh H., Saxena P., Puri Y.M. // CIRP J. Manuf. Sci. Technol. 2021. V. 33. P. 339–368. https://doi.org/10.1016/j.cirpj.2021.03.014
  3. Trogadas P., Ramani V., Strasser P., Fuller T.F., Coppens M.O. // Angew. Chem. Int. Ed. 2016. V. 55. P. 122–148. https://doi.org/10.1002/anie.201506394
  4. Alnarabiji M.S., Tantawi O., Ramli A., Zabidi N.A.M., Ghanem O.B., Abdullah B. // Renew. Sust. Energy Rev. 2019. V. 114. 109326. https://doi.org/10.1016/j.rser.2019.109326
  5. Schwieger W., Machoke A.G., Weissenberger T., Inayat A., Selvam T., Klumpp M., Inayat A. // Chem. Soc. Rev. 2016. V. 45. P. 3353–3376. https://doi.org/10.1039/C5CS00599J
  6. Stanev L., Kolev M., Drenchev B., Drenchev L. // J. Manuf. Sci. Eng. 2017. V. 139. P. 050802. https://doi.org/10.1115/1.4034440
  7. Гнедовец А.Г., Зеленский В.А., Анкудинов А.Б., Алымов М.И. // ДАН. 2019. Т. 484. № 4. С. 436–440. https://doi.org/10.31857/S0869-56524844436-440
  8. Gnedovets A.G., Zelensky V.A., Ankudinov A.B., Shus-tov V.S., Alymov M.I. // J. Phys.: Conf. Ser. 2021. V. 1942. P. 012019. https://doi.org/10.1088/1742-6596/1942/1/012019
  9. Atwater M.A. // Met. Powder Rep. 2019. V. 74. P. 251–254. https://doi.org/10.1016/j.mprp.2019.01.004
  10. Faes A., Hessler-Wyser A., Zryd A., Van herle J. // Membranes. 2012. V. 2. P. 585–664. https://doi.org/10.3390/membranes2030585
  11. Nakamura R., Lee J.G., Mori H., Nakajima H. // Philos. Mag. 2008. V. 88. P. 257–264. https://doi.org/10.1080/14786430701819203
  12. Xiang W., Dong Z., Luo Y., Zhao J., Wang J.O., Ibrahim K., Zhan H., Yue W., Guo H. // Materials. 2019. V. 12. P. 805. https://doi.org/10.3390/ma12050805
  13. Wang Z., Yan Y., Chen Y., Han W., Liu M., Zhang Y., Xiong Y., Chen K., Lv Z., Liu M. // J. Mater. Chem. A. 2017. V. 5. P. 20709–20719. https://doi.org/10.1039/C7TA04293K
  14. Chen C., Wang S., Peng Z., Ao G. // J. Mater. Sci.: Mater. Electron. 2019. V. 30. P. 11231–11238. https://doi.org/10.1007/s10854-019-01468-w
  15. Kharchenko Y., Blikharskyy Z., Vira V., Vasyliv B., Podhurska V. // Appl. Nanosci. 2020. V. 10. P. 4535–4543. https://doi.org/10.1007/s13204-020-01391-1
  16. Kenel C., Geisendorfer N.R., Shah R.N., Dunand D.C. // Addit. Manuf. 2021. V. 37. 101637. https://doi.org/10.1016/j.addma.2020.101637
  17. Jae W., Song J., Hong J.J., Kim J. // J. Alloys Compd. 2019. V. 805. P. 957–966. https://doi.org/10.1016/j.jallcom.2019.07.192
  18. Zhu P., Wu Z., Zhao Y. // Scripta Mater. 2019. V. 172. P. 119–124. https://doi.org/10.1016/j.scriptamat.2019.07.019
  19. Xing F., Ta N., Zhong J., Zhong Y., Zhang L. // Solid State Ionics. 2019. V. 341. P. 115018. https://doi.org/10.1016/j.ssi.2019.115018
  20. Weinberg K., Böhme T., Müller W.H. // Comput. Mater. Sci. 2009. V. 45. P. 827–831. https://doi.org/10.1016/j.commatsci.2008.09.028
  21. Choi I.D., Matlock D.K., Olson D.L. // Mater. Sci. Eng., A. 1990. V. 124. P. L15–L18. https://doi.org/10.1016/0921-5093(90)90161-U

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (3MB)
4.

Download (1MB)
5.

Download (71KB)

Copyright (c) 2023 А.Г. Гнедовец, В.А. Зеленский, В.С. Шустов, М.И. Алымов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies