COMPOSITE MATERIALS BASED ON MOF ZIF-8 AND IONIC LIQUID [BMIm]+[BF4]: AN EPR STUDY USING NITROXIDE SPIN PROBES

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A method for the controlled filling of pores in metal-organic frameworks (MOFs) with ionic liquids (ILs) is proposed, which can be applied for selective gas sorption in MOFs. Using an example of MOF ZIF-8 and IL [BMIm]+[BF4], the composites with different IL content were prepared upon control by electron paramagnetic resonance (EPR) of nitroxide spin probes. The effect of IL on the sorption of nitric oxide (II) into these composites was studied using inversion gas chromatography.

Авторлар туралы

N. Kudryavyh

International Tomography Center, Siberian Branch of the Russian Academy of Sciences

Email: mfedin@tomo.nsc.ru
Russian, 630090, Novosibirsk

М. Ivanov

International Tomography Center, Siberian Branch of the Russian Academy of Sciences

Email: mfedin@tomo.nsc.ru
Russian, 630090, Novosibirsk

А. Poryvaev

International Tomography Center, Siberian Branch of the Russian Academy of Sciences

Email: mfedin@tomo.nsc.ru
Russian, 630090, Novosibirsk

D. Polyukhov

International Tomography Center, Siberian Branch of the Russian Academy of Sciences

Email: mfedin@tomo.nsc.ru
Russian, 630090, Novosibirsk

R. Sagdeev

International Tomography Center, Siberian Branch of the Russian Academy of Sciences

Email: mfedin@tomo.nsc.ru
Russian, 630090, Novosibirsk

М. Fedin

International Tomography Center, Siberian Branch of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: mfedin@tomo.nsc.ru
Russian, 630090, Novosibirsk

Әдебиет тізімі

  1. Mueller U., Schubert M., Teich F., Puetter H., Schierle-Arndt K., Pastré J. // J. Mater. Chem. 2006. V. 16. № 7. P. 626–636. https://doi.org/10.1039/b511962f
  2. Czaja A.U., Trukhan N., Müller U. // Chem. Soc. Rev. 2009. V. 38. № 5. P. 1284–1293. https://doi.org/10.1039/b804680h
  3. Li J.R., Kuppler R.J., Zhou H.C. // Chem. Soc. Rev. 2009. V. 38. № 5. P. 1477–1504. https://doi.org/10.1039/b802426j
  4. Li Y.W., Yan H., Hu T.L., Ma H.Y., Li D.C., Wang S.N., Yao Q.X., Dou J.M., Xu J., Bu X.H. // Chem. Commun. 2017. V. 53. № 15. P. 2394–2397. https://doi.org/10.1039/c6cc09923h
  5. Liu S., Sun L., Xu F., Zhang J., Jiao C., Li F., Li Z., Wang S., Wang Z., Jiang X., Zhou H., Yang L., Schick C. // Energy Environ. Sci. 2013. V. 6. № 3. P. 818–823. https://doi.org/10.1039/c3ee23421e
  6. Li H., Wang K., Sun Y., Lollar C.T., Li J., Zhou H.C. // Mater. Today. 2018. V. 21. № 2. P. 108–121. https://doi.org/10.1016/j.mattod.2017.07.006
  7. Nijem N., Wu H., Canepa P., Marti A., Balkus K.J., Thonhauser T., Li J., Chabal Y.J. // J. Am. Chem. Soc. 2012. V. 134. № 37. P. 15201–15204. https://doi.org/10.1021/ja305754f
  8. Qiao Z., Yan Y., Tang Y., Liang H., Jiang J. // J. Phys. Chem. C. 2021. V. 125. № 14. P. 7839–7848. https://doi.org/10.1021/acs.jpcc.0c10773
  9. Luz I., Llabrés i Xamena F.X., Corma A. // J. Catal. 2010. V. 276. № 1. P. 134–140. https://doi.org/10.1016/j.jcat.2010.09.010
  10. Gole B., Sanyal U., Banerjee R., Mukherjee P.S. // Inorg. Chem. 2016. V. 55. № 5. P. 2345–2354. https://doi.org/10.1021/acs.inorgchem.5b02739
  11. Abánades Lázaro I., Forgan R.S. // Coord. Chem. Rev. 2019. V. 380. P. 230–259. https://doi.org/10.1016/j.ccr.2018.09.009
  12. Morris W., Stevens C.J., Taylor R.E., Dybowski C., Yaghi O.M., Garcia-Garibay M.A. // J. Phys. Chem. C. 2012. V. 116. № 24. P. 13307–13312. https://doi.org/10.1021/jp303907p
  13. Lee Y.R., Jang M.S., Cho H.Y., Kwon H.J., Kim S., Ahn W.S. // Chem. Eng. J. 2015. V. 271. P. 276–280. https://doi.org/10.1016/j.cej.2015.02.094
  14. Mu L., Liu B., Liu H., Yang Y., Sun C., Chen G. // J. Mater. Chem. 2012. V. 22. № 24. P. 12246–12252. https://doi.org/10.1039/c2jm31541f
  15. Durak O., Zeeshan M., Habib N., Gulbalkan H.C., Alsuhile A.A.A.M., Caglayan H.P., Kurtoğlu-Öztulum S.F., Zhao Y., Haslak Z.P., Uzun A., Keskin S. // Micro-porous Mesoporous Mater. 2022. V. 332. P. 111703. https://doi.org/10.1016/j.micromeso.2022.111703
  16. Yohannes A., Li J., Yao S. // J. Mol. Liq. 2020. V. 318. P. 114304. https://doi.org/10.1016/j.molliq.2020.114304
  17. Ding M., Jiang H.L. // ACS Catal. 2018. V. 8. № 4. P. 3194–3201. https://doi.org/10.1021/acscatal.7b03404
  18. Ramos V.C., Han W., Zhang X., Zhang S., Yeung K.L. // Curr. Opin. Green Sustain. Chem. 2020. V. 25. P. 100391. https://doi.org/10.1016/j.cogsc.2020.100391
  19. Nozari V., Zeeshan M., Keskin S., Uzun A. // CrystEngComm. 2018. V. 20. № 44. P. 7137–7143. https://doi.org/10.1039/C8CE01364K
  20. Kinik F.P., Uzun A., Keskin S. // ChemSusChem. 2017. V. 10. № 14. P. 2842–2863. https://doi.org/10.1002/cssc.201700716
  21. Xu L., Liu B., Liu S.X., Jiao H., de Castro B., Cunha-Silva L. // CrystEngComm. 2014. V. 16. № 46. P. 10649–10657. https://doi.org/10.1039/c4ce01722f
  22. Dybtsev D.N., Chun H., Kim K. // Chem. Comm. 2004. V. 3. P. 1594–1595. https://doi.org/10.1039/B403001J
  23. Liao J.H., Wu P.C., Huang W.C. // Cryst. Growth Des. 2006. V. 6. № 5. P. 1062–1063. https://doi.org/10.1021/cg0504197
  24. Khan N.A., Hasan Z., Jhung S.H. // Chem. Eur. J. 2014. V. 20. № 2. P. 376–380. https://doi.org/10.1002/chem.201304291
  25. Luo Q.X., Song X.D., Ji M., Park S.E., Hao C., Li Y.Q. // Appl. Catal. A. 2014. V. 478. P. 81–90. https://doi.org/10.1016/j.apcata.2014.03.041
  26. Fujie K., Yamada T., Ikeda R., Kitagawa H. // Angew. Chem., Int. Ed. 2014. V. 53. № 42. P. 11302–11305. https://doi.org/10.1002/anie.201406011
  27. Khan N.A., Hasan Z., Jhung S.H. // Chem. Commun. 2016. V. 52. № 12. P. 2561–2564. https://doi.org/10.1039/c5cc08896h
  28. Ding L.G., Yao B.J., Jiang W.L., Li J.T., Fu Q.J., Li Y.A., Liu Z.H., Ma J.P., Dong Y.-B. // Inorg. Chem. 2017. V. 56. № 4. P. 2337–2344. https://doi.org/10.1021/acs.inorgchem.6b03169
  29. Ban Y., Li Z., Li Y., Peng Y., Jin H., Jiao W., Guo A., Wang P., Yang Q., Zhong C., Yang W. // Angew. Chem., Int. Ed. 2015. V. 54. № 51. P. 15483–15487. https://doi.org/10.1002/anie.201505508
  30. Kinik F.P., Altintas C., Balci V., Koyuturk B., Uzun A., Keskin S. // ACS Appl. Mater. Interfaces. 2016. V. 8. № 45. P. 30992–31005. https://doi.org/10.1021/acsami.6b11087
  31. Mohamedali M., Ibrahim H., Henni A. // Chem. Eng. J. 2018. V. 334. P. 817–828. https://doi.org/10.1016/j.cej.2017.10.104
  32. Polyukhov D.M., Poryvaev A.S., Sukhikh A.S., Gromi-lov S.A., Fedin M.V. // ACS Appl. Mater. Interfaces. 2021. V. 13. № 34. P. 40830–40836. https://doi.org/10.1021/acsami.1c12166
  33. Polyukhov D.M., Poryvaev A.S., Gromilov S.A., Fedin M.V. // Nano Lett. 2019. V. 19. № 9. P. 6506–6510. https://doi.org/10.1021/acs.nanolett.9b02730
  34. Poryvaev A.S., Polyukhov D.M., Fedin M.V. // ACS Appl. Mater. Interfaces. 2020. V. 12. № 14. P. 16655–16661. https://doi.org/10.1021/acsami.0c03462
  35. Ivanov M.Y., Poryvaev A.S., Polyukhov D.M., Pri-khod’ko S.A., Adonin N.Y., Fedin M.V. // Nanoscale. 2020. V. 12. № 46. P. 23480–23487. https://doi.org/10.1039/d0nr06961b

Қосымша файлдар


© Н.А. Кудрявых, М.Ю. Иванов, А.С. Порываев, Д.М. Полюхов, Р.З. Сагдеев, М.В. Федин, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>