COMPOSITE MATERIALS BASED ON MOF ZIF-8 AND IONIC LIQUID [BMIm]+[BF4]−: AN EPR STUDY USING NITROXIDE SPIN PROBES
- Autores: Kudryavyh N.А.1, Ivanov М.Y.1, Poryvaev А.S.1, Polyukhov D.М.1, Sagdeev R.Z.1, Fedin М.V.1
-
Afiliações:
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences
- Edição: Volume 509, Nº 1 (2023)
- Páginas: 61-68
- Seção: PHYSICAL CHEMISTRY
- URL: https://journals.rcsi.science/2686-9535/article/view/135963
- DOI: https://doi.org/10.31857/S2686953523700206
- EDN: https://elibrary.ru/OWYAWB
- ID: 135963
Citar
Resumo
A method for the controlled filling of pores in metal-organic frameworks (MOFs) with ionic liquids (ILs) is proposed, which can be applied for selective gas sorption in MOFs. Using an example of MOF ZIF-8 and IL [BMIm]+[BF4]−, the composites with different IL content were prepared upon control by electron paramagnetic resonance (EPR) of nitroxide spin probes. The effect of IL on the sorption of nitric oxide (II) into these composites was studied using inversion gas chromatography.
Palavras-chave
Sobre autores
N. Kudryavyh
International Tomography Center, Siberian Branch of the Russian Academy of Sciences
Email: mfedin@tomo.nsc.ru
Russian, 630090, Novosibirsk
М. Ivanov
International Tomography Center, Siberian Branch of the Russian Academy of Sciences
Email: mfedin@tomo.nsc.ru
Russian, 630090, Novosibirsk
А. Poryvaev
International Tomography Center, Siberian Branch of the Russian Academy of Sciences
Email: mfedin@tomo.nsc.ru
Russian, 630090, Novosibirsk
D. Polyukhov
International Tomography Center, Siberian Branch of the Russian Academy of Sciences
Email: mfedin@tomo.nsc.ru
Russian, 630090, Novosibirsk
R. Sagdeev
International Tomography Center, Siberian Branch of the Russian Academy of Sciences
Email: mfedin@tomo.nsc.ru
Russian, 630090, Novosibirsk
М. Fedin
International Tomography Center, Siberian Branch of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: mfedin@tomo.nsc.ru
Russian, 630090, Novosibirsk
Bibliografia
- Mueller U., Schubert M., Teich F., Puetter H., Schierle-Arndt K., Pastré J. // J. Mater. Chem. 2006. V. 16. № 7. P. 626–636. https://doi.org/10.1039/b511962f
- Czaja A.U., Trukhan N., Müller U. // Chem. Soc. Rev. 2009. V. 38. № 5. P. 1284–1293. https://doi.org/10.1039/b804680h
- Li J.R., Kuppler R.J., Zhou H.C. // Chem. Soc. Rev. 2009. V. 38. № 5. P. 1477–1504. https://doi.org/10.1039/b802426j
- Li Y.W., Yan H., Hu T.L., Ma H.Y., Li D.C., Wang S.N., Yao Q.X., Dou J.M., Xu J., Bu X.H. // Chem. Commun. 2017. V. 53. № 15. P. 2394–2397. https://doi.org/10.1039/c6cc09923h
- Liu S., Sun L., Xu F., Zhang J., Jiao C., Li F., Li Z., Wang S., Wang Z., Jiang X., Zhou H., Yang L., Schick C. // Energy Environ. Sci. 2013. V. 6. № 3. P. 818–823. https://doi.org/10.1039/c3ee23421e
- Li H., Wang K., Sun Y., Lollar C.T., Li J., Zhou H.C. // Mater. Today. 2018. V. 21. № 2. P. 108–121. https://doi.org/10.1016/j.mattod.2017.07.006
- Nijem N., Wu H., Canepa P., Marti A., Balkus K.J., Thonhauser T., Li J., Chabal Y.J. // J. Am. Chem. Soc. 2012. V. 134. № 37. P. 15201–15204. https://doi.org/10.1021/ja305754f
- Qiao Z., Yan Y., Tang Y., Liang H., Jiang J. // J. Phys. Chem. C. 2021. V. 125. № 14. P. 7839–7848. https://doi.org/10.1021/acs.jpcc.0c10773
- Luz I., Llabrés i Xamena F.X., Corma A. // J. Catal. 2010. V. 276. № 1. P. 134–140. https://doi.org/10.1016/j.jcat.2010.09.010
- Gole B., Sanyal U., Banerjee R., Mukherjee P.S. // Inorg. Chem. 2016. V. 55. № 5. P. 2345–2354. https://doi.org/10.1021/acs.inorgchem.5b02739
- Abánades Lázaro I., Forgan R.S. // Coord. Chem. Rev. 2019. V. 380. P. 230–259. https://doi.org/10.1016/j.ccr.2018.09.009
- Morris W., Stevens C.J., Taylor R.E., Dybowski C., Yaghi O.M., Garcia-Garibay M.A. // J. Phys. Chem. C. 2012. V. 116. № 24. P. 13307–13312. https://doi.org/10.1021/jp303907p
- Lee Y.R., Jang M.S., Cho H.Y., Kwon H.J., Kim S., Ahn W.S. // Chem. Eng. J. 2015. V. 271. P. 276–280. https://doi.org/10.1016/j.cej.2015.02.094
- Mu L., Liu B., Liu H., Yang Y., Sun C., Chen G. // J. Mater. Chem. 2012. V. 22. № 24. P. 12246–12252. https://doi.org/10.1039/c2jm31541f
- Durak O., Zeeshan M., Habib N., Gulbalkan H.C., Alsuhile A.A.A.M., Caglayan H.P., Kurtoğlu-Öztulum S.F., Zhao Y., Haslak Z.P., Uzun A., Keskin S. // Micro-porous Mesoporous Mater. 2022. V. 332. P. 111703. https://doi.org/10.1016/j.micromeso.2022.111703
- Yohannes A., Li J., Yao S. // J. Mol. Liq. 2020. V. 318. P. 114304. https://doi.org/10.1016/j.molliq.2020.114304
- Ding M., Jiang H.L. // ACS Catal. 2018. V. 8. № 4. P. 3194–3201. https://doi.org/10.1021/acscatal.7b03404
- Ramos V.C., Han W., Zhang X., Zhang S., Yeung K.L. // Curr. Opin. Green Sustain. Chem. 2020. V. 25. P. 100391. https://doi.org/10.1016/j.cogsc.2020.100391
- Nozari V., Zeeshan M., Keskin S., Uzun A. // CrystEngComm. 2018. V. 20. № 44. P. 7137–7143. https://doi.org/10.1039/C8CE01364K
- Kinik F.P., Uzun A., Keskin S. // ChemSusChem. 2017. V. 10. № 14. P. 2842–2863. https://doi.org/10.1002/cssc.201700716
- Xu L., Liu B., Liu S.X., Jiao H., de Castro B., Cunha-Silva L. // CrystEngComm. 2014. V. 16. № 46. P. 10649–10657. https://doi.org/10.1039/c4ce01722f
- Dybtsev D.N., Chun H., Kim K. // Chem. Comm. 2004. V. 3. P. 1594–1595. https://doi.org/10.1039/B403001J
- Liao J.H., Wu P.C., Huang W.C. // Cryst. Growth Des. 2006. V. 6. № 5. P. 1062–1063. https://doi.org/10.1021/cg0504197
- Khan N.A., Hasan Z., Jhung S.H. // Chem. Eur. J. 2014. V. 20. № 2. P. 376–380. https://doi.org/10.1002/chem.201304291
- Luo Q.X., Song X.D., Ji M., Park S.E., Hao C., Li Y.Q. // Appl. Catal. A. 2014. V. 478. P. 81–90. https://doi.org/10.1016/j.apcata.2014.03.041
- Fujie K., Yamada T., Ikeda R., Kitagawa H. // Angew. Chem., Int. Ed. 2014. V. 53. № 42. P. 11302–11305. https://doi.org/10.1002/anie.201406011
- Khan N.A., Hasan Z., Jhung S.H. // Chem. Commun. 2016. V. 52. № 12. P. 2561–2564. https://doi.org/10.1039/c5cc08896h
- Ding L.G., Yao B.J., Jiang W.L., Li J.T., Fu Q.J., Li Y.A., Liu Z.H., Ma J.P., Dong Y.-B. // Inorg. Chem. 2017. V. 56. № 4. P. 2337–2344. https://doi.org/10.1021/acs.inorgchem.6b03169
- Ban Y., Li Z., Li Y., Peng Y., Jin H., Jiao W., Guo A., Wang P., Yang Q., Zhong C., Yang W. // Angew. Chem., Int. Ed. 2015. V. 54. № 51. P. 15483–15487. https://doi.org/10.1002/anie.201505508
- Kinik F.P., Altintas C., Balci V., Koyuturk B., Uzun A., Keskin S. // ACS Appl. Mater. Interfaces. 2016. V. 8. № 45. P. 30992–31005. https://doi.org/10.1021/acsami.6b11087
- Mohamedali M., Ibrahim H., Henni A. // Chem. Eng. J. 2018. V. 334. P. 817–828. https://doi.org/10.1016/j.cej.2017.10.104
- Polyukhov D.M., Poryvaev A.S., Sukhikh A.S., Gromi-lov S.A., Fedin M.V. // ACS Appl. Mater. Interfaces. 2021. V. 13. № 34. P. 40830–40836. https://doi.org/10.1021/acsami.1c12166
- Polyukhov D.M., Poryvaev A.S., Gromilov S.A., Fedin M.V. // Nano Lett. 2019. V. 19. № 9. P. 6506–6510. https://doi.org/10.1021/acs.nanolett.9b02730
- Poryvaev A.S., Polyukhov D.M., Fedin M.V. // ACS Appl. Mater. Interfaces. 2020. V. 12. № 14. P. 16655–16661. https://doi.org/10.1021/acsami.0c03462
- Ivanov M.Y., Poryvaev A.S., Polyukhov D.M., Pri-khod’ko S.A., Adonin N.Y., Fedin M.V. // Nanoscale. 2020. V. 12. № 46. P. 23480–23487. https://doi.org/10.1039/d0nr06961b
Arquivos suplementares
