Sociophysical Methods in Science and Technology Studies
- Authors: Egerev S.V.1
-
Affiliations:
- Institute of Scientific Information for Social Sciences of the RAS
- Issue: Vol 7, No 2 (2025)
- Pages: 155-163
- Section: Discussion: science and society through the lens of natural sciences
- URL: https://journals.rcsi.science/2686-827X/article/view/380535
- DOI: https://doi.org/10.19181/smtp.2025.7.2.9
- EDN: https://elibrary.ru/UBWPSL
- ID: 380535
Cite item
Full Text
Abstract
Sociophysics is considered a promising interdisciplinary field applying physical methods to analyze social systems, particularly in the context of science and technology research. This text traces the historical development of sociophysics, from the ideas of D. Hume to contemporary approaches based on big data analysis. The author discusses key sociophysical models and methods, including cellular automata, the Ising model, agent-based models and self-organization models, as well as their application in the study of scientific collaborations, patent activity and other aspects of the development of science and technology. The importance of participatory projects (‘citizen science’) and the necessity of integrating sociophysical methods with traditional social science approaches are emphasized, in order to avoid reductionism and gain a more comprehensive understanding of intricate social phenomena.
About the authors
Sergey V. Egerev
Institute of Scientific Information for Social Sciences of the RAS
Email: segerev@gmail.com
ORCID iD: 0000-0001-6998-1060
SPIN-code: 9467-4883
ResearcherId: J-2310-2016
Doctor of Physical and Mathematical Sciences, Chief Researcher Moscow, Russia
References
- Jusup M., Holme P., Kanazava K. [et al.] Social physics. Physics Reports. 2022;948:1–148. doi: 10.1016/j.physrep.2021.10.005.
- Castellano C., Fortunato S., Loreto V. Statistical physics of social dynam-ics. Reviews of Modern Physics. 2009;81(2):591–646. doi: 10.1103/RevModPhys.81.591.
- Pentland A. Social physics: How good ideas spread – the lessons from a new science. New York, NY : The Penguin Press; 2014. x, 300 p. ISBN 978-1594205651.
- Amuchastegui M., Birch K., Kaltenbrunner W. The intersections between sociology and STS: A Big Data approach. Sociological Perspectives. 2023;66(5):868–887. doi: 10.1177/07311214231167170.
- Stauffer D. Social applications of two-dimensional Ising models. American Journal of Physics. 2008;76(4):470–473. doi: 10.1119/1.2779882.
- Wąs J., Sirakoulis G. Ch. Cellular automata applications for research and industry. Journal of Computational Science. 2015;11:223–225. doi: 10.1016/j.jocs.2015.10.005.
- Abar S., Theodoropoulos G. K., Lemarinier P., O’Hare G. M. P. Agent Based Modelling and Simulation tools: A review of the state-of-art software. Computer Science Review. 2017;24:13–33. doi: 10.1016/j.cosrev.2017.03.001.
- Ma T., Nakamori Y. Agent-based modeling on technological innovation as an evolutionary process. European Journal of Operational Research. 2005;166(3):741–755. doi: 10.1016/j.ejor.2004.01.055.
- Moreno J. L. Foundations of sociometry: An introduction. Sociometry. 1941;4(1):15–35. doi: 10.2307/2785363.
- Zhu Y., Zhang B., Wang Q. A., Li W., Cai X. The principle of least effort and Zipf distribution. Journal of Physics: Conference Series. 2018;1113:012007. doi: 10.1088/1742-6596/1113/1/012007.
- Nicholls P. T. Price’s square root law: Empirical validity and relation to Lotka’s law. Information Processing & Management. 1988;24(4):469–477. doi: 10.1016/0306-4573(88)90049-0.
- Bornmann L., Marx W. The Anna Karenina principle: A way of thinking about success in science. Journal of the American Society for Information Sci-ence and Technology. 2012;63(10):2037–2051. doi: 10.1002/asi.22661.
- Gershenson C., Trianni V., Werfel J., Sayama H. Self-organization and ar-tificial life. Artificial Life. 2020;26(3):391–408. doi: 10.1162/artl_a_00324.
- Weidlich W. Physics and social science – the approach of synergetics. Physics Reports. 1991;204(1):1–163. doi: 10.1016/0370-1573(91)90024-G.
- Poudel R., McGowan J., Georgiev G. Y., Haven E., Gunes U., Zhang H. Thermodynamics 2.0: Bridging the natural and social sciences. Philosophical Transactions of the Royal Society A. 2023;381(2252):20220275. doi: 10.1098/rsta.2022.0275.
- Perelló J., Larroya F., Bonhoure I., Peter F. Citizen science for social phys-ics: Digital tools and participation. The European Physical Journal Plus. 2024;139(7):572. doi: 10.1140/epjp/s13360-024-05336-3.
- Schweitzer F. Sociophysics. Physics Today. 2018;71(2):40–46. doi: 10.1063/PT.3.3845.
Supplementary files



