On the Main Trends for the Development of Artificial Intelligence Technologies as a Research Tool
- Authors: Osadchuk E.V.1
-
Affiliations:
- ANO “Digital Economy”
- Issue: Vol 7, No 1 (2025)
- Pages: 147-157
- Section: Digital Environment and Problems Of Digitalization
- URL: https://journals.rcsi.science/2686-827X/article/view/289764
- DOI: https://doi.org/10.19181/smtp.2025.7.1.10
- EDN: https://elibrary.ru/PHTZHX
- ID: 289764
Cite item
Full Text
Abstract
The article was prepared on the basis of a report presented at the interdepartmental round table “The Use of Artificial Intelligence Technologies for Pursuing Research in the Humanities” that was held on September 27, 2024. The work provides an overview of certain provisions of the National Strategy for the Development of Artificial Intelligence for the period up to 2030, which was updated in February 2024 and is aimed at expanding the application of AI technologies as a research tool. The overview of the provisions is accompanied by a description of the advantages that scholars gain using AI technologies within the framework of generally accepted stages of research work. Along with the advantages for researchers, the article presents the possibilities of applying certain AI tools in relation to other tools, including the benefits of large AI models and strong AI. The article also contains a list of possible results of the use of AI technologies in a number of humanities disciplines and fields – in sociology, economics, medicine, etc. In particular, the specific tools of Russian researchers created on the basis of these technologies are taken from the practices of AI research centers established in 2021–2023.
Keywords
AI4Science, AI4Science, artificial intelligence, AI, AI development strategy, science tools, research tools, big data processing, big data analysis, hypothesis testing, hypothesis generation, experiment planning, automation of data collection, data interpretation, computer modeling, large AI models, strong AI, AI research centers
About the authors
Evgeny V. Osadchuk
ANO “Digital Economy”
Email: wildidea@mail.ru
SPIN-code: 8418-0345
Candidate of Economics, Director, Artificial Intelligence Department Moscow, Russia
References
- Фонотов А. Г., Бедняк Ю. А. Искусственный интеллект: ожидаемое или неминуемое? // Управление наукой: теория и практика. 2024. Т. 6, № 2. С. 15–25. doi: 10.19181/smtp.2024.6.2.1. EDN EYMDJO.
- Scientific discovery in the age of artificial intelligence / H. Wang, T. Fu, Y. Du [et al.] // Nature. 2023. Vol. 620, № 7972. P. 47–60. doi: 10.1038/s41586-023-06221-2.
- Фок Д. Как искусственный интеллект меняет науку / пер. с англ. В. Голованова // Хабр : [сайт]. 2019. 29 марта. URL: https://habr.com/ru/articles/445806/ (дата обращения: 25.10.2024).
- Тамбовцев В. Л. О чём стоит помнить, размышляя об искусственном интеллекте // Управление наукой: теория и практика. 2024. Т. 6, № 2. С. 26–34. doi: 10.19181/smtp.2024.6.2.2. EDN FFDRFQ.
- Nunavath V., Goodwin M. The role of artificial intelligence in social media big data analytics for disaster management – initial results of a systematic literature review // 2018 5th International Conference on Information and Communication Technologies for Disaster Management (ICT-DM) (Sendai, Japan, 2018, December 4–7). P. 1–4. doi: 10.1109/ICT-DM.2018.8636388.
- Hilpisch Y. Artificial intelligence in finance : A Python-based guide. Sebastopol, CA : O’Reilly Media, Inc., 2020. 475 p. ISBN 9781492055433.
- Big data analytics in healthcare: A systematic literature review / S. Khanra, A. Dhir, A. K. M. Najmul Islam, M. Mäntymäki // Enterprise Information Systems. 2020. Vol. 14, № 7. Р. 878–912. doi: 10.1080/17517575.2020.1812005.
- Sebestyén V., Czvetkó T., Abonyi J. The applicability of big data in climate change research: The importance of system of systems thinking // Frontiers in Environmental Science. 2021. Vol. 9. Art. 619092. doi: 10.3389/fenvs.2021.619092.
- Machine learning in psychometrics and psychological research / G. Orrù, M. Monaro, C. Conversano [et al.] // Frontiers in Psychology. 2020. Vol. 10. Art. 2970. doi: 10.3389/fpsyg.2019.02970.
- Артамонов В. А., Артамонова Е. В., Милаков А. С. Когнитивизм как база искусственного интеллекта // Управление наукой: теория и практика. 2024. Т. 6, № 2. С. 35–45. doi: 10.19181/smtp.2024.6.2.3. EDN FMRRBD.
- Language models are few-shot learners / T. B. Brown, B. Mann, N. Ryder [et al.] // arXiv.org : [сайт]. 2020. July 22. URL: https://arxiv.org/abs/2005.14165 (дата обращения: 25.10.2024). doi: 10.48550/arXiv.2005.14165.
- Бостром Н. Искусственный интеллект: этапы, угрозы, стратегии / пер. с англ. С. Филина. М. : Манн, Иванов и Фербер, 2016. 490, [2] с. ISBN 978-5-00057-810-0.
- Домингос П. Верховный алгоритм: как машинное обучение изменит наш мир / пер. с англ. В. Горохова ; [науч. ред. А. Сбоев, А. Серенко]. М. : Манн, Иванов и Фербер, 2016. 336 c. ISBN 978-5-00100-172-0.
Supplementary files



