OBTAINING THERMOELECTRIC MATERIAL Cu2Se BY THE SELF-PROPAGATING HIGH-TEMPERATURE SYNTHESIS METHOD

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Using the method of self-propagating high-temperature synthesis in the combustion mode, a product based on the α-Cu2Se phase was obtained from a 2Cu + Se powder mixture. The effect of synthesis conditions on the composition of the combustion product was studied and the unit cell parameters of the synthesized phases were determined. It has been established that as a result of combustion of pressed 2Cu+Se mixtures at an Ar pressure of 0.5–1.5 MPa, a product is formed containing two modifications of Cu2Se – low-temperature monoclinic α-Cu2Se and high-temperature cubic β-Cu1.8Se phases. Combustion of a 2Cu+Se mixture of bulk density at an Ar pressure above 0.5 MPa yielded a single-phase product, the monoclinic α-Cu2Se phase.

作者简介

G. Nigmatullina

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: enigma@ism.ac.ru
Russia, Moscow Region, Chernogolovka

D. Kovalev

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: kovalev@ism.ac.ru
Russia, Moscow Region, Chernogolovka

M. Alymov

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: alymov@ism.ac.ru
Russia, Moscow Region, Chernogolovka

参考

  1. Nunna R., Qiu P., Yin M., Chen H., Hanus R., Song Q., Chen L. Ultrahigh thermoelectric performance in Cu2Sebased hybrid materials with highly dispersed molecular CNTs // Energy & Environmental Science. 2017. V. 10. I. 9. P. 1928–1935. https://doi.org/10.1039/c7ee01737e
  2. Hu Q., Zhang Y., Zhang Y., Li X.-J., Song H. High thermoelectric performance in Cu2Se/CDs hybrid materials // J. Alloys and Compounds. 2019. P. 152204. https://doi.org/10.1016/j.jallcom.2019.152204
  3. Lei J., Ma Z., Zhang D., Chen Y., Wang C., Yang X., Wang Y. High thermoelectric performance in Cu2Se superionic conductor with enhanced liquid-like behaviour by dispersing SiC // J. Materials Chemistry A. 2019. V. 7. P. 7006–7014. https://doi.org/10.1039/c8ta12210e
  4. Liu W.D., Yang L., Chen Z.G. Cu2Se thermoelectrics: property, methodology, and device // Nano Today. 2020. V. 35. P. 100938. https://doi.org/10.1016/j.nantod.2020.100938
  5. Liu H., Shi X., Xu F., Zhang L., Zhang W., Chen L., Li Q., Uher C., Day T., Snyder G.J. Copper ion liquid-like thermoelectrics // Nature Materials. 2012. V. 11. I. 5. P. 422–425. https://doi.org/10.1038/nmat3273
  6. Pourkiaei S.M., Ahmadi M.H., Sadeghzadeh M., Moosavi S., Pourfayaz F., Chen L., Pour Yazdi M.A., Kumar R. Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials // Energy. 2019. V. 186. P. 115849. https://doi.org/10.1016/j.energy.2019.07.179
  7. Tohidi F., Holagh S.G., Chitsaz A. Thermoelectric Generators: A comprehensive review of characteristics and applications // Applied Thermal Engineering. 2022. V. 201. Pt A. P. 117793. https://doi.org/10.1016/j.applthermaleng.2021.117793
  8. Twaha S., Zhu J., Yan Y., Li B. A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement // Renewable and Sustainable Energy Reviews. 2016. V. 65. P. 698–726. https://doi.org/10.1016/j.rser.2016.07.034
  9. Liu W.-D., Yang L., Chen Z.-G. Cu2Se thermoelectrics: property, methodology, and device // Nano Today. 2020. V. 35. P. 100938. https://doi.org/10.1016/j.nantod.2020.100938
  10. Merzhanov A.G. In: Combustion and plasma synthesis of high-temperature materials / Ed. by Z. Munir, J. Holt. N.Y., 1990. P. 1–53.
  11. Su X., Fu F., Yan Y., Zheng G., Liang T., Zhang Q., Cheng X., Yang D., Chi H., Tang X., Zhang Q., Uher C. Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing // Nature Communications, 2014. V. 5. P. 4908. https://doi.org/10.1038/ncomms5908
  12. Zhang J., Zhu T., Zhang C., Yan Y., Tan G., Liu W., Su X., Tang X. In-situ formed nano-pore induced by Ultrasonication boosts the thermoelectric performance of Cu2Se compounds // J. Alloys and Compounds. 2021. V. 881. P. 160639. https://doi.org/10.1016/j.jallcom.2021.160639
  13. Yu B., Liu W., Chen S., Wang H., Wang H., Chen G., Ren Z. Thermoelectric properties of copper selenide with ordered selenium layer and disordered copper layer // Nano Energy. 2012. V. 1. i. 3. P. 472–478. https://doi.org/10.1016/j.nanoen.2012.02.010
  14. Yang L., Chen Z.-G., Han G., Hong M., Zou Y., Zou J. High performance thermoelectric Cu2Se nanoplates through nanostructure engineering // Nano Energy. 2015. V. 16. P. 367–374. https://doi.org/10.1016/j.nanoen.2015.07.012
  15. Bulat L.P., Osvenskii V.B., Ivanov A.A., Sorokin A.I., Pshenay-Severin D.A., Bublik V.T., Tabachkova N.Yu., Panchenko V.P., Lavrentev M.G. Experimental and theoretical study of the thermoelectric properties of copper selenide // Semiconductors. 2017. V. 51. P. 854–857. https://doi.org/10.1134/S1063782617070041
  16. Nigmatullina G.R., Kovalev D.Yu., Bickulova N.N. SHS in the Cu–Se System // Intern. J. Self-Propagating High-Temperature Synthesis. 2021. V. 30. №. 3. P. 180–184. https://doi.org/10.3103/S1061386221030043
  17. Kovalev D.Y., Nigmatullina G.R., Bikkulova N.N. Synthesis of Cu2–nSe via autowave combustion of an elemental powder mixture // Inorganic Materials. 2021. V. 57. № 11. P. 1124–1134. https://doi.org/10.1134/S0020168521110078
  18. Siegrist T. Crystallographica – a software toolkit for crystallography // J. Applied Crystallography. 1997. V. 30. P. 418–419. http://www.crystallographica.co.uk
  19. International Centre for Diffraction Data. http://www.icdd.com
  20. Petříček V., Dušek M., Palatinus L. Crystallographic Computing System JANA2006: General features // Zeitschrift Für Kristallographie – Crystalline Materials. 2014. V. 229. No. 5. P. 345–352. https://doi.org/10.1515/zkri-2014-1737
  21. Cu-Se Binary Phase Diagram 33–38 at.% Se https://materials.springer.com/isp/phase-diagram/docs/c_0905191
  22. Cu2Se, α (Cu2Se ht1) Crystal Structure. https://materials.springer.com/isp/crystallographic/docs/sd_1834121
  23. Gulay L.D., Daszkiewicz M., Strok O.M., Pietraszko A. Crystal structure of Cu2Se // Chemistry of Metals and Alloys. 2011. V. 4. P. 200–205. https://doi.org/10.1002/chin.201125004
  24. Borchert W. Lattice transformations in the system Cu2–xSe. Z // Zeitschrift fuer Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie. 1945. V. 106. P. 5–24.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (1MB)
3.

下载 (736KB)
4.

下载 (169KB)
5.

下载 (151KB)

版权所有 © Г.Р. Нигматуллина, Д.Ю. Ковалев, М.И. Алымов, 2023

##common.cookie##