OBTAINING THERMOELECTRIC MATERIAL Cu2Se BY THE SELF-PROPAGATING HIGH-TEMPERATURE SYNTHESIS METHOD

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Using the method of self-propagating high-temperature synthesis in the combustion mode, a product based on the α-Cu2Se phase was obtained from a 2Cu + Se powder mixture. The effect of synthesis conditions on the composition of the combustion product was studied and the unit cell parameters of the synthesized phases were determined. It has been established that as a result of combustion of pressed 2Cu+Se mixtures at an Ar pressure of 0.5–1.5 MPa, a product is formed containing two modifications of Cu2Se – low-temperature monoclinic α-Cu2Se and high-temperature cubic β-Cu1.8Se phases. Combustion of a 2Cu+Se mixture of bulk density at an Ar pressure above 0.5 MPa yielded a single-phase product, the monoclinic α-Cu2Se phase.

Palavras-chave

Sobre autores

G. Nigmatullina

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Autor responsável pela correspondência
Email: enigma@ism.ac.ru
Russia, Moscow Region, Chernogolovka

D. Kovalev

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Autor responsável pela correspondência
Email: kovalev@ism.ac.ru
Russia, Moscow Region, Chernogolovka

M. Alymov

Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Autor responsável pela correspondência
Email: alymov@ism.ac.ru
Russia, Moscow Region, Chernogolovka

Bibliografia

  1. Nunna R., Qiu P., Yin M., Chen H., Hanus R., Song Q., Chen L. Ultrahigh thermoelectric performance in Cu2Sebased hybrid materials with highly dispersed molecular CNTs // Energy & Environmental Science. 2017. V. 10. I. 9. P. 1928–1935. https://doi.org/10.1039/c7ee01737e
  2. Hu Q., Zhang Y., Zhang Y., Li X.-J., Song H. High thermoelectric performance in Cu2Se/CDs hybrid materials // J. Alloys and Compounds. 2019. P. 152204. https://doi.org/10.1016/j.jallcom.2019.152204
  3. Lei J., Ma Z., Zhang D., Chen Y., Wang C., Yang X., Wang Y. High thermoelectric performance in Cu2Se superionic conductor with enhanced liquid-like behaviour by dispersing SiC // J. Materials Chemistry A. 2019. V. 7. P. 7006–7014. https://doi.org/10.1039/c8ta12210e
  4. Liu W.D., Yang L., Chen Z.G. Cu2Se thermoelectrics: property, methodology, and device // Nano Today. 2020. V. 35. P. 100938. https://doi.org/10.1016/j.nantod.2020.100938
  5. Liu H., Shi X., Xu F., Zhang L., Zhang W., Chen L., Li Q., Uher C., Day T., Snyder G.J. Copper ion liquid-like thermoelectrics // Nature Materials. 2012. V. 11. I. 5. P. 422–425. https://doi.org/10.1038/nmat3273
  6. Pourkiaei S.M., Ahmadi M.H., Sadeghzadeh M., Moosavi S., Pourfayaz F., Chen L., Pour Yazdi M.A., Kumar R. Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials // Energy. 2019. V. 186. P. 115849. https://doi.org/10.1016/j.energy.2019.07.179
  7. Tohidi F., Holagh S.G., Chitsaz A. Thermoelectric Generators: A comprehensive review of characteristics and applications // Applied Thermal Engineering. 2022. V. 201. Pt A. P. 117793. https://doi.org/10.1016/j.applthermaleng.2021.117793
  8. Twaha S., Zhu J., Yan Y., Li B. A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement // Renewable and Sustainable Energy Reviews. 2016. V. 65. P. 698–726. https://doi.org/10.1016/j.rser.2016.07.034
  9. Liu W.-D., Yang L., Chen Z.-G. Cu2Se thermoelectrics: property, methodology, and device // Nano Today. 2020. V. 35. P. 100938. https://doi.org/10.1016/j.nantod.2020.100938
  10. Merzhanov A.G. In: Combustion and plasma synthesis of high-temperature materials / Ed. by Z. Munir, J. Holt. N.Y., 1990. P. 1–53.
  11. Su X., Fu F., Yan Y., Zheng G., Liang T., Zhang Q., Cheng X., Yang D., Chi H., Tang X., Zhang Q., Uher C. Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing // Nature Communications, 2014. V. 5. P. 4908. https://doi.org/10.1038/ncomms5908
  12. Zhang J., Zhu T., Zhang C., Yan Y., Tan G., Liu W., Su X., Tang X. In-situ formed nano-pore induced by Ultrasonication boosts the thermoelectric performance of Cu2Se compounds // J. Alloys and Compounds. 2021. V. 881. P. 160639. https://doi.org/10.1016/j.jallcom.2021.160639
  13. Yu B., Liu W., Chen S., Wang H., Wang H., Chen G., Ren Z. Thermoelectric properties of copper selenide with ordered selenium layer and disordered copper layer // Nano Energy. 2012. V. 1. i. 3. P. 472–478. https://doi.org/10.1016/j.nanoen.2012.02.010
  14. Yang L., Chen Z.-G., Han G., Hong M., Zou Y., Zou J. High performance thermoelectric Cu2Se nanoplates through nanostructure engineering // Nano Energy. 2015. V. 16. P. 367–374. https://doi.org/10.1016/j.nanoen.2015.07.012
  15. Bulat L.P., Osvenskii V.B., Ivanov A.A., Sorokin A.I., Pshenay-Severin D.A., Bublik V.T., Tabachkova N.Yu., Panchenko V.P., Lavrentev M.G. Experimental and theoretical study of the thermoelectric properties of copper selenide // Semiconductors. 2017. V. 51. P. 854–857. https://doi.org/10.1134/S1063782617070041
  16. Nigmatullina G.R., Kovalev D.Yu., Bickulova N.N. SHS in the Cu–Se System // Intern. J. Self-Propagating High-Temperature Synthesis. 2021. V. 30. №. 3. P. 180–184. https://doi.org/10.3103/S1061386221030043
  17. Kovalev D.Y., Nigmatullina G.R., Bikkulova N.N. Synthesis of Cu2–nSe via autowave combustion of an elemental powder mixture // Inorganic Materials. 2021. V. 57. № 11. P. 1124–1134. https://doi.org/10.1134/S0020168521110078
  18. Siegrist T. Crystallographica – a software toolkit for crystallography // J. Applied Crystallography. 1997. V. 30. P. 418–419. http://www.crystallographica.co.uk
  19. International Centre for Diffraction Data. http://www.icdd.com
  20. Petříček V., Dušek M., Palatinus L. Crystallographic Computing System JANA2006: General features // Zeitschrift Für Kristallographie – Crystalline Materials. 2014. V. 229. No. 5. P. 345–352. https://doi.org/10.1515/zkri-2014-1737
  21. Cu-Se Binary Phase Diagram 33–38 at.% Se https://materials.springer.com/isp/phase-diagram/docs/c_0905191
  22. Cu2Se, α (Cu2Se ht1) Crystal Structure. https://materials.springer.com/isp/crystallographic/docs/sd_1834121
  23. Gulay L.D., Daszkiewicz M., Strok O.M., Pietraszko A. Crystal structure of Cu2Se // Chemistry of Metals and Alloys. 2011. V. 4. P. 200–205. https://doi.org/10.1002/chin.201125004
  24. Borchert W. Lattice transformations in the system Cu2–xSe. Z // Zeitschrift fuer Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie. 1945. V. 106. P. 5–24.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (736KB)
4.

Baixar (169KB)
5.

Baixar (151KB)

Declaração de direitos autorais © Г.Р. Нигматуллина, Д.Ю. Ковалев, М.И. Алымов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies