Self-oscillating mode in an anomalous thermoviscous liquid flow

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It is known that the flow of liquids with a nonmonotonic dependence of viscosity on temperature (abnormally thermoviscous liquids) in the presence of temperature gradients, for example, when a heated liquid flows into a cooled channel, is accompanied by the formation of a high-viscosity region localized in the flow, which determines the features of its flow. In this paper, the conditions for the occurrence of self-oscillating regimes of flow rate variation during the flow of anomalously thermoviscous liquids in annular channels under the action of a constant pressure drop and under given conditions of heat transfer on the inner and outer walls of the annular channel are determined. It has been found that self-oscillations in the flow rate of an anomalously thermoviscous liquid can occur when flowing in an annular channel, on the walls of which there is an abrupt decrease in the intensity of heat transfer. The region of existence of the self-oscillation mode is determined by the values of the pressure drop and the geometric parameter equal to the ratio of the width of the annular gap to the radius of the inner cylinder. In addition, weakly damped flow rate oscillations with a very small damping decrement were also observed at the boundaries of this region.

Full Text

Restricted Access

About the authors

V. N. Kireev

Mavlutov Institute of Mechanics of the Ufa Federal Research Centre of the Russian Academy of Sciences; Ufa University of Science and Technology

Author for correspondence.
Email: kireev@anrb.ru
Russian Federation, Ufa; Ufa

A. A. Mukhutdinova

Mavlutov Institute of Mechanics of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: mukhutdinova23@yandex.ru
Russian Federation, Ufa

S. F. Urmancheev

Mavlutov Institute of Mechanics of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: said52@mail.ru
Russian Federation, Ufa

References

  1. Bacon R.F., Fanelli R. The viscosity of sulfur // J. Am. Chem. Soc. 1943. V. 65. P. 639–648. https://doi.org/10.1021/ja01244a043
  2. Tabachnikova E.D., Bengus V.Z., Egorov D.V. et al. Mechanical properties of amorphous alloys ribbons prepared by rapid quenching of the melt after different thermal treatments before quenching // Mater. Sci. Eng. A. 1997. V. 226–228. P. 887–890. https://doi.org/10.1016/S0921-5093(97)80093-7
  3. Алтунина Л.К., Кувшинов В.А., Кувшинов И.В. и др. Увеличение нефтеотдачи пермо-карбоновой залежи высоковязкой нефти Усинского месторождения физико-химическими и комплексными технологиями (обзор) // Журнал СФУ. Химия. 2018. Т. 11. № 3. С. 462–476.
  4. Jin K., Barde A., Nithyanandam K. et al. Sulfur heat transfer behavior in vertically-oriented isochoric thermal energy storage systems // Applied Energy. 2019. V. 240. P. 870–881. https://doi.org/10.1016/j.apenergy.2019.02.077
  5. Урманчеев С.Ф., Киреев В.Н. Установившееся течение жидкости с температурной аномалией вязкости // ДАН. 2004. Т. 396. № 2. С. 204–207.
  6. Киреев В.Н., Мухутдинова А.А., Урманчеев С.Ф. О критических условиях теплообмена при течении жидкости с немонотонной зависимостью вязкости от температуры в кольцевом канале // ПММ. 2023. Т. 87. № 3. С. 369–378.
  7. Мелких А.В., Селезнев В.Д. Автоколебания неизотермического течения вязкой жидкости в канале // ТВТ. 2008. Т. 46. № 1. С. 100–109.
  8. Мельник О.Э. Нестационарная модель динамики вулканического извержения с учетом кристаллизации и фильтрации газа через магму // ДАН. 2001. Т. 377. № 5. С. 629–633.
  9. Мельник О.Э., Афанасьев А.А., Зарин Г.А. Дегазация магмы при подъеме по каналу вулкана, пересекающему водонасыщенные породы // ДАН. 2016. Т. 468. № 4. С. 162–165.
  10. Ланда П.С. Нелинейные колебания и волны. М.: Физматлит, 1997. 496 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Circuit of the annular channel and boundary conditions for temperature: I – walls with constant temperature, II – convective heat transfer.

Download (122KB)
3. Fig. 2. A characteristic view of the viscous barrier formed in the channel at successive time points (Re = 600, Pe = 6000, Nu = 5, L/R = 60, r0/R = 0.9, β = 0.05).

Download (272KB)
4. Fig. 3. The change in fluid flow and the corresponding phase trajectories in the mode of damped (a, b) and undamped (c, d) oscillations. The dots on the phase portraits mark the initial states of the system.

Download (116KB)
5. Fig. 4. Dynamic modes of changing the flow rate of an abnormally thermally viscous liquid depending on the geometry of the annular channel and the pressure drop: I – the region of undamped oscillations, II – the region of damped oscillations, III – the region of no oscillations.

Download (69KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».