Self-oscillating mode in an anomalous thermoviscous liquid flow

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

It is known that the flow of liquids with a nonmonotonic dependence of viscosity on temperature (abnormally thermoviscous liquids) in the presence of temperature gradients, for example, when a heated liquid flows into a cooled channel, is accompanied by the formation of a high-viscosity region localized in the flow, which determines the features of its flow. In this paper, the conditions for the occurrence of self-oscillating regimes of flow rate variation during the flow of anomalously thermoviscous liquids in annular channels under the action of a constant pressure drop and under given conditions of heat transfer on the inner and outer walls of the annular channel are determined. It has been found that self-oscillations in the flow rate of an anomalously thermoviscous liquid can occur when flowing in an annular channel, on the walls of which there is an abrupt decrease in the intensity of heat transfer. The region of existence of the self-oscillation mode is determined by the values of the pressure drop and the geometric parameter equal to the ratio of the width of the annular gap to the radius of the inner cylinder. In addition, weakly damped flow rate oscillations with a very small damping decrement were also observed at the boundaries of this region.

全文:

受限制的访问

作者简介

V. Kireev

Mavlutov Institute of Mechanics of the Ufa Federal Research Centre of the Russian Academy of Sciences; Ufa University of Science and Technology

编辑信件的主要联系方式.
Email: kireev@anrb.ru
俄罗斯联邦, Ufa; Ufa

A. Mukhutdinova

Mavlutov Institute of Mechanics of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: mukhutdinova23@yandex.ru
俄罗斯联邦, Ufa

S. Urmancheev

Mavlutov Institute of Mechanics of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: said52@mail.ru
俄罗斯联邦, Ufa

参考

  1. Bacon R.F., Fanelli R. The viscosity of sulfur // J. Am. Chem. Soc. 1943. V. 65. P. 639–648. https://doi.org/10.1021/ja01244a043
  2. Tabachnikova E.D., Bengus V.Z., Egorov D.V. et al. Mechanical properties of amorphous alloys ribbons prepared by rapid quenching of the melt after different thermal treatments before quenching // Mater. Sci. Eng. A. 1997. V. 226–228. P. 887–890. https://doi.org/10.1016/S0921-5093(97)80093-7
  3. Алтунина Л.К., Кувшинов В.А., Кувшинов И.В. и др. Увеличение нефтеотдачи пермо-карбоновой залежи высоковязкой нефти Усинского месторождения физико-химическими и комплексными технологиями (обзор) // Журнал СФУ. Химия. 2018. Т. 11. № 3. С. 462–476.
  4. Jin K., Barde A., Nithyanandam K. et al. Sulfur heat transfer behavior in vertically-oriented isochoric thermal energy storage systems // Applied Energy. 2019. V. 240. P. 870–881. https://doi.org/10.1016/j.apenergy.2019.02.077
  5. Урманчеев С.Ф., Киреев В.Н. Установившееся течение жидкости с температурной аномалией вязкости // ДАН. 2004. Т. 396. № 2. С. 204–207.
  6. Киреев В.Н., Мухутдинова А.А., Урманчеев С.Ф. О критических условиях теплообмена при течении жидкости с немонотонной зависимостью вязкости от температуры в кольцевом канале // ПММ. 2023. Т. 87. № 3. С. 369–378.
  7. Мелких А.В., Селезнев В.Д. Автоколебания неизотермического течения вязкой жидкости в канале // ТВТ. 2008. Т. 46. № 1. С. 100–109.
  8. Мельник О.Э. Нестационарная модель динамики вулканического извержения с учетом кристаллизации и фильтрации газа через магму // ДАН. 2001. Т. 377. № 5. С. 629–633.
  9. Мельник О.Э., Афанасьев А.А., Зарин Г.А. Дегазация магмы при подъеме по каналу вулкана, пересекающему водонасыщенные породы // ДАН. 2016. Т. 468. № 4. С. 162–165.
  10. Ланда П.С. Нелинейные колебания и волны. М.: Физматлит, 1997. 496 с.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Circuit of the annular channel and boundary conditions for temperature: I – walls with constant temperature, II – convective heat transfer.

下载 (122KB)
3. Fig. 2. A characteristic view of the viscous barrier formed in the channel at successive time points (Re = 600, Pe = 6000, Nu = 5, L/R = 60, r0/R = 0.9, β = 0.05).

下载 (272KB)
4. Fig. 3. The change in fluid flow and the corresponding phase trajectories in the mode of damped (a, b) and undamped (c, d) oscillations. The dots on the phase portraits mark the initial states of the system.

下载 (116KB)
5. Fig. 4. Dynamic modes of changing the flow rate of an abnormally thermally viscous liquid depending on the geometry of the annular channel and the pressure drop: I – the region of undamped oscillations, II – the region of damped oscillations, III – the region of no oscillations.

下载 (69KB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##