Self-oscillating mode in an anomalous thermoviscous liquid flow

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

It is known that the flow of liquids with a nonmonotonic dependence of viscosity on temperature (abnormally thermoviscous liquids) in the presence of temperature gradients, for example, when a heated liquid flows into a cooled channel, is accompanied by the formation of a high-viscosity region localized in the flow, which determines the features of its flow. In this paper, the conditions for the occurrence of self-oscillating regimes of flow rate variation during the flow of anomalously thermoviscous liquids in annular channels under the action of a constant pressure drop and under given conditions of heat transfer on the inner and outer walls of the annular channel are determined. It has been found that self-oscillations in the flow rate of an anomalously thermoviscous liquid can occur when flowing in an annular channel, on the walls of which there is an abrupt decrease in the intensity of heat transfer. The region of existence of the self-oscillation mode is determined by the values of the pressure drop and the geometric parameter equal to the ratio of the width of the annular gap to the radius of the inner cylinder. In addition, weakly damped flow rate oscillations with a very small damping decrement were also observed at the boundaries of this region.

Texto integral

Acesso é fechado

Sobre autores

V. Kireev

Mavlutov Institute of Mechanics of the Ufa Federal Research Centre of the Russian Academy of Sciences; Ufa University of Science and Technology

Autor responsável pela correspondência
Email: kireev@anrb.ru
Rússia, Ufa; Ufa

A. Mukhutdinova

Mavlutov Institute of Mechanics of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: mukhutdinova23@yandex.ru
Rússia, Ufa

S. Urmancheev

Mavlutov Institute of Mechanics of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: said52@mail.ru
Rússia, Ufa

Bibliografia

  1. Bacon R.F., Fanelli R. The viscosity of sulfur // J. Am. Chem. Soc. 1943. V. 65. P. 639–648. https://doi.org/10.1021/ja01244a043
  2. Tabachnikova E.D., Bengus V.Z., Egorov D.V. et al. Mechanical properties of amorphous alloys ribbons prepared by rapid quenching of the melt after different thermal treatments before quenching // Mater. Sci. Eng. A. 1997. V. 226–228. P. 887–890. https://doi.org/10.1016/S0921-5093(97)80093-7
  3. Алтунина Л.К., Кувшинов В.А., Кувшинов И.В. и др. Увеличение нефтеотдачи пермо-карбоновой залежи высоковязкой нефти Усинского месторождения физико-химическими и комплексными технологиями (обзор) // Журнал СФУ. Химия. 2018. Т. 11. № 3. С. 462–476.
  4. Jin K., Barde A., Nithyanandam K. et al. Sulfur heat transfer behavior in vertically-oriented isochoric thermal energy storage systems // Applied Energy. 2019. V. 240. P. 870–881. https://doi.org/10.1016/j.apenergy.2019.02.077
  5. Урманчеев С.Ф., Киреев В.Н. Установившееся течение жидкости с температурной аномалией вязкости // ДАН. 2004. Т. 396. № 2. С. 204–207.
  6. Киреев В.Н., Мухутдинова А.А., Урманчеев С.Ф. О критических условиях теплообмена при течении жидкости с немонотонной зависимостью вязкости от температуры в кольцевом канале // ПММ. 2023. Т. 87. № 3. С. 369–378.
  7. Мелких А.В., Селезнев В.Д. Автоколебания неизотермического течения вязкой жидкости в канале // ТВТ. 2008. Т. 46. № 1. С. 100–109.
  8. Мельник О.Э. Нестационарная модель динамики вулканического извержения с учетом кристаллизации и фильтрации газа через магму // ДАН. 2001. Т. 377. № 5. С. 629–633.
  9. Мельник О.Э., Афанасьев А.А., Зарин Г.А. Дегазация магмы при подъеме по каналу вулкана, пересекающему водонасыщенные породы // ДАН. 2016. Т. 468. № 4. С. 162–165.
  10. Ланда П.С. Нелинейные колебания и волны. М.: Физматлит, 1997. 496 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Circuit of the annular channel and boundary conditions for temperature: I – walls with constant temperature, II – convective heat transfer.

Baixar (122KB)
3. Fig. 2. A characteristic view of the viscous barrier formed in the channel at successive time points (Re = 600, Pe = 6000, Nu = 5, L/R = 60, r0/R = 0.9, β = 0.05).

Baixar (272KB)
4. Fig. 3. The change in fluid flow and the corresponding phase trajectories in the mode of damped (a, b) and undamped (c, d) oscillations. The dots on the phase portraits mark the initial states of the system.

Baixar (116KB)
5. Fig. 4. Dynamic modes of changing the flow rate of an abnormally thermally viscous liquid depending on the geometry of the annular channel and the pressure drop: I – the region of undamped oscillations, II – the region of damped oscillations, III – the region of no oscillations.

Baixar (69KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies