Economic and Natural Factors of Spatial Heterogeneity of Forest Carbon Emissions in Russia in the 2010s

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Increasing the net carbon sequestration of forests is the only way for Russia to achieve carbon neutrality by 2060. In this context, along with measures to increase the area and quality of stands, ways to reduce carbon emissions due to human activities and natural disturbances are important. The article uses regression models of panel data to analyze the spatial heterogeneity of carbon emissions in the Russian forests in 2009–2021 as measured by Global Forest Watch project tools, depending on economic (volume of logging, government spending on forest management, forest protection and forest fire measures) and natural (scale of forest fires and outbreaks of mass reproduction of insect pests) factors. Logging and forest fires are expected to have the greatest impact on forest carbon losses, while spending on the performance of state functions in the sphere of forest relations has almost no response in the reduction of carbon emissions. Thus, in fact, the goal of preserving forests through public investment in appropriate measures has not yet been achieved. The resulting set of regression models can be used to predict the dynamics of the regional effects of forest carbon losses under changes in logging volumes and various trajectories of the dynamics of forest fire activity. Such analysis will be critically necessary for the formation of regional plans for greenhouse gas emission reduction, taking into account the maximum use of the potential of forests’ net carbon sequestration build-up.

About the authors

А. I. Pyzhev

Siberian Federal University; Center for Forest Ecology and Productivity, Russian Academy of Sciences; Institute of Economics and Industrial Engineering SB RAS

Author for correspondence.
Email: apyzhev@sfu-kras.ru
Russia, Krasnoyarsk; Russia, Moscow; Russia, Novosibirsk

References

  1. Барталев С.А., Стыценко Ф.В. Спутниковая оценка гибели древостоев от пожаров по данным о сезонном распределении пройденной огнем площади // Лесоведение. 2021. № 2. С. 115–122. https://doi.org/10.31857/S0024114821020029
  2. Ваганов Е.А. и др. Оценка вклада российских лесов в снижение рисков климатических изменений // Экономика региона. 2021. Т. 17. № 4. С. 1096–1109. https://doi.org/10.17059/EKON.REG.2021-4-4
  3. Замолодчиков Д.Г., Грабовский В.И., Каганов В.В. Экосистемные услуги и пространственное распределение защитных лесов Российской Федерации // Лесоведение. 2021. № 6. С. 581–592.
  4. Порфирьев Б.Н., Широв А.А., Семикашев В.В., Колпаков А.Ю. Экономические риски в контексте разработки политики с низким уровнем эмиссий парниковых газов в России // Энергетическая политика. 2020. № 5 (147). С. 92–103.
  5. Пыжев А.И. Климатическую повестку никто не отменял: почему это важно для российской экономики // ЭКО. 2022. № 7 (577). С. 31–50. https://doi.org/10.30680/ECO0131-7652-2022-7-31-50
  6. Романовская А.А., Трунов А.А., Коротков В.Н., Карабань Р.Т. Проблема учета поглощающей способности лесов России в Парижском соглашении // Лесоведение. 2018. № 5. С. 323–334.
  7. Филипчук А.Н., Моисеев Б.Н., Малышева Н.В. Новые аспекты оценки поглощения парниковых газов лесами России в контексте Парижского соглашения об изменении климата // Лесохозяйственная информация. 2017. № 1. С. 88–98.
  8. Шварц Е.А., Птичников А.В. Стратегия низкоуглеродного развития и роль лесов в ее реализации // Науч. труды Вольного экономического общества России. 2022. Т. 236. С. 399–426.
  9. Швиденко А., Щепащенко Д. Углеродный бюджет лесов России // Сибирский лесной журн. 2014. № 1. С. 69–92.
  10. Arellano M., Bond S. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations // Review of Economic Studies. 1991. Vol. 58. № 2. 277 p. https://doi.org/10.2307/2297968
  11. Croissant Y., Millo G. Panel Data Econometrics in R: The plm Package // J. of Statistical Software. 2008. Vol. 27. № 2.
  12. Filipchuk A. et al. Russian forests: A new approach to the assessment of carbon stocks and sequestration capacity // Environmental Development. 2018. Vol. 26. P. 68–75. https://doi.org/10.1016/j.envdev.2018.03.002
  13. Hansen M.C., Potapov P.V., Moore R. et al. High-Resolution Global Maps of 21st-Century Forest Cover Change // Science. 2013. Vol. 342. № 6160. P. 850–853.
  14. Harris N.L., Gibbs D.A., Baccini A., Birdsey R.A. et al. Global maps of twenty-first century forest carbon fluxes // Nature Climate Change. 2021. https://doi.org/10.1038/s41558-020-00976-6
  15. Kharuk V.I., Ponomarev E.I., Ivanova G.A. et al. Wildfires in the Siberian taiga // Ambio. 2021. https://doi.org/10.1007/s13280-020-01490-x
  16. Pan Y., Birdsey R.A., Fang J., Houghton R., Kauppi P.E., Kurz W.A., Phillips O.L. et al. A Large and Persistent Carbon Sink in the World’s Forests // Science. 2011. Vol. 333. № 6045. P. 988–993. https://doi.org/10.1126/science.1201609
  17. Pyzhev A.I., Gordeev R.V., Vaganov E.A. Reliability and Integrity of Forest Sector Statistics – A Major Constraint to Effective Forest Policy in Russia // Sustainability. 2021. Vol. 1. № 13. 86 p. https://doi.org/10.3390/su13010086
  18. Rogelj J., Geden O., Cowie A., Reisinger A. Net-Zero Emissions Targets Are Vague: Three Ways to Fix // Nature. 2021. Vol. 591. № 7850. P. 365–68. https://doi.org/10.1038/d41586-021-00662-3
  19. Romanov A.A. et al. Reassessment of carbon emissions from fires and a new estimate of net carbon uptake in Russian forests in 2001–2021 // Science of The Total Environment. 2022. Vol. 846. № 157322.
  20. Schepaschenko D. et al. Russian forest sequesters substantially more carbon than previously reported // Scientific Reports. 2021. Vol. 11. № 1. P. 12825.
  21. Shimizu K., Ota T., Mizoue N. Accuracy Assessments of Local and Global Forest Change Data to Estimate Annual Disturbances in Temperate Forests // Remote Sensing. 2020. Vol. 15. № 12. P. 2438. https://doi.org/10.3390/rs12152438
  22. Tennekes M. tmap: Thematic Maps in R // J. of Statistical Software. 2018. Vol. 84. № 6.
  23. Wickham H. et al. Welcome to the Tidyverse // J. of Statistical Software. 2019. Vol. 4. № 43. P. 1686. https://doi.org/10.21105/joss.01686
  24. Zhang D., Wang H., Wang X., Lü Z. Accuracy Assessment of the Global Forest Watch Tree Cover 2000 in China // Int. J. of Applied Earth Observation and Geoinformation. 2020. № 87. P. 102033. https://doi.org/10.1016/j.jag.2019.102033

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (951KB)
3.

Download (251KB)

Copyright (c) 2023 А.И. Пыжев

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».