No 2 (68) (2025): NO2 (68) (2025)

Articles

Young Science and City Development

Fomenko A.V.
MMGU Herald. 2025;(2 (68)):2-2
pages 2-2 views

The Development of Housing and Communal Services Within the Smart City Concept in Russia

Bakanov A.O.

Abstract

This article is dedicated to the role of the "Smart City" urban management digitization Project in the digital transformation process of the Russian Federation subject territories. It provides an overview of the project's implementation, relevant legislative initiatives, and examples of embracing smart technologies (e.g., smart electricity meters, Unified Information and Analytical System of Housing and Communal Services) in cities across Russia. The study delves into measures to encourage digitization of housing and communal services, including those of setting up online services for construction companies, streamlining administrative procedures, establishing an open database of digital solutions for managing urban economy, and governmental initiatives to launch pilot programs in cities. The importance of citizen engagement in urban governance through open electronic platforms is emphasized. The effects of implementing digital technologies under the "Smart City" project are weighed, highlighting the growth of the cities' "IQ" index. Among top priorities for further digital development in Russia are those of expanding broadband internet access, promoting the use of domestic software, and cultivating IT talent. Further digitalization of housing and communal services requires upgrading remote control standards.
MMGU Herald. 2025;(2 (68)):3-6
pages 3-6 views

Decision-Making in the Public Sector Using Artificial Intelligence

Kopeykin A.V.

Abstract

This article investigates the application of artificial intelligence (AI) technologies to enhance the effectiveness of management decision-making in the public sector. Faced with increasing data volumes and the growing complexity of socio-economic processes, government agencies are compelled to adopt innovative tools for information analysis, forecasting, and decision-making. The study examines key AI technologies, such as machine learning, natural language processing, and expert systems, and their application in public administration. Particular attention is given to the use of AI for optimizing budget planning, improving the quality of public service delivery, forecasting socio-economic trends, and managing crisis situations. Furthermore, the article raises questions concerning the nature of management decisions and the essence of a managerial decision when it is wholly or partially formed with the aid of artificial intelligence.
MMGU Herald. 2025;(2 (68)):7-12
pages 7-12 views

Digitalization of Urban Governance: Conceptual Foundations and Practical Implementation Aspects

Kalinin D.V.

Abstract

In an era of intensifying global urbanization, the digitalization of urban governance has become critically important. This article examines contemporary approaches to the digital transformation of urban agglomerations, analyzes the conceptual foundations of digital government, and evaluates the practical experience of Moscow as a leader in this domain. The essence of urban governance digitalization is elucidated, with a focus on its distinct characteristics compared to analogous processes in the business sector. Three primary elements of an effective digital ecosystem are identified: digital government, modern technologies, and societal readiness for change. At the heart of digital government lies the United Nations model, encompassing principles of governance, strategies, metrics, and stakeholder engagement. In Moscow, this model has been implemented through the "Smart City - 2030" project, which has deployed solutions such as "Digital Twin," smart cameras, electronic services, and other technologies. The success of Moscow's digital transformation is evidenced by its leading position in the "IQ Index" of cities, a World Innovation Award for contributions to sustainable development, and a significant increase in the share of the high-tech sector within its Gross Regional Product (GRP). Effective digitalization of urban governance necessitates a comprehensive approach that integrates technological innovation, adaptive management models, and societal engagement. Moscow's experience can serve as a benchmark for other cities striving for sustainable development in the digital age.
MMGU Herald. 2025;(2 (68)):13-18
pages 13-18 views

Modern Management Culture: Key Sociocultural and Political Influencing Factors

Samarin V.S.

Abstract

This paper presents a comprehensive analysis of factors, which have an impact over management culture in Russia and internationally, - digitalization, sanctions pressures, government initiatives, and local cultural specificities on the formation of managerial culture. The effectiveness of management activities contingent upon organizations' capacity to adapt global practices to local conditions, integrating innovation with cultural nuances. Geert Hofstede's theory of cultural dimensions serves as the methodological framework, enabling a comparative analysis of parameters such as Power Distance Index (PDI) and individualism. In Russia (PDI - 93), centralized decision-making predominates, whereas Sweden (PDI - 31) features prevalent flat organizational structures. Digital transformation encounters diverse cultural barriers. Among the significant political factors are government regulation, sanctions, and environmental standards. Management culture represents a synthesis of local traditions and global innovations. The primary challenge for Russia is to balance import substitution with flexibility, investing in human capital, and adapting ESG standards. Organizations must integrate digital technologies with global trends while preserving cultural specificity through flexible HR strategies and inclusive practices.
MMGU Herald. 2025;(2 (68)):19-23
pages 19-23 views

Development of Knowledge Management Theories: Classical Approaches and Modern Concepts

Yurasova A.I.

Abstract

This article analyzes classical and contemporary approaches to knowledge management (KM) within organizations. It examines key theoretical concepts in this field from the mid-20th century to the present day, noting the transformation of understanding knowledge as an economic resource. Among current KM technologies are big data analytics, artificial intelligence (AI) applications, and machine learning. Organizational approaches to KM have also evolved, with the incorporation of crowdsourcing and open innovation. Case studies of successful applications of modern KM technologies are presented from both Russian and international companies. By utilizing a suite of KM technologies, particularly AI-driven information analysis, organizations can leverage accumulated experience within the business environment and forecast future changes. Open innovation technologies enable the expansion of the knowledge base. Combining traditional training methods with personalized approaches in a digital environment allows organizations to achieve more effective management of their intellectual capital. This, in turn, accelerates innovative development, creating a more resilient and adaptable organizational structure.
MMGU Herald. 2025;(2 (68)):24-29
pages 24-29 views

Analysis of Intellectual Maturity Indicators within the Russian Education System

Lanshchikova I.L.

Abstract

Digital transformation is a central objective for the strategic and tactical development of the national economy. This paper examines the evolution of novel practices for monitoring the preparedness of the Russian education sector for the integration of Artificial Intelligence (AI). We explore the concepts of "digital maturity," "intellectual maturity," and "readiness for AI adoption," and provide an overview of the indicators used to assess key industries and societal domains. Analysis of Russian data reveals positive trends in AI implementation and strategic planning. However, a decline in trust and perceived security is observed, attributed to issues of algorithmic transparency, legal constraints, infrastructural obsolescence, and a shortage of skilled personnel. To enhance the efficacy of digitalization within Russian education, it is advisable to adapt elements of international best practices in defining intellectual maturity levels, specifically, integrating student performance metrics into the assessment of intellectual maturity. The high level of intellectual maturity in Moscow's education sector is achieved through the large-scale "Moscow Electronic School" project. A comprehensive approach to analyzing intellectual maturity indicators will facilitate significant economic and qualitative gains from the ongoing digital transformation of the education sector.
MMGU Herald. 2025;(2 (68)):30-35
pages 30-35 views

Artificial Intelligence Technologies in the Development of the Russian Capital Transport Complex

Kizlyk M.A., Khalikov T.R.

Abstract

Artificial intelligence (AI) presents significant opportunities to enhance the development of Moscow metropolitan transportation system, improving its efficiency, safety, and convenience. Current AI applications in the transportation sector include information security, interactive services (chatbots and virtual assistants), computer vision, generative AI, digital twins, traffic law enforcement, intelligent traffic management, and autonomous vehicles. Successfully implemented AI-driven projects in the capital include Face Pay (contactless fare payment via facial recognition), the "Moscow.River" Automated Information System (optimizing river transport), and "Incident Management" system (a video analytics system deployed on the Moscow Ring Road and key highways). Planned initiatives include the implementation of the "PROEvent" automated system (aggregating and processing information on incidents within the road network). Further advancement of AI technologies requires scaling existing systems and implementing new tools. Key conditions for success involve ensuring cybersecurity, protecting personal data, and balancing automation with human oversight. AI is becoming a critical driver in the transformation of Moscow's transportation system.
MMGU Herald. 2025;(2 (68)):36-41
pages 36-41 views

Preserving Cultural Heritage as an Element of Societal Historical Identity

Trushevskaia V.S.

Abstract

This article addresses the preservation of historical-architectural complexes, which are essential to a city's identity. Urbanization leads to the redistribution of urban space functions, the increasing complexity of infrastructure, and architectural changes, thereby complicating the integration of historical sites into the modern urban environment. The demand for new urban spaces increases infrastructural pressures and reduces the significance of historical buildings. Challenges can arise in efforts to preserve architectural monuments due to inconsistent application of legal and regulatory frameworks. Insufficient public awareness regarding the protection of cultural heritage is a significant negative factor. Inadequate educational initiatives and a lack of opportunities for citizen participation in decision-making contribute to public indifference towards the fate of urban cultural landmarks. Educational efforts, particularly those drawing upon experiences from the Great Patriotic War (World War II) era, are of special value in engaging the population. Maintaining national identity and historical memory within society is crucial for safeguarding cultural heritage. It is essential to attract professionals capable of operating effectively amidst increasing urbanization and understanding the specific challenges of the sector in its current state. Strengthened governmental oversight of the processes of renovation and capital reconstruction of historical buildings is needed to prevent cases of unethical restoration practices and commercially-driven urban planning decisions.
MMGU Herald. 2025;(2 (68)):42-47
pages 42-47 views

Conceptual Framework for Implementing Artificial Intelligence in the Management of Urban Transport Complex

Tomilov M.V.

Abstract

The article is devoted to the implementation of artificial intelligence (AI) technologies in the management of information support for the Moscow transport complex. The most important functions of AI technologies are automatic detection of traffic violations, adaptive control of traffic lights; constant monitoring of the road situation in real time, timely informing road users about the current situation on the roads, public transport and availability of free parking spaces. Successful implementation of these functions requires a well-developed IT infrastructure, ensuring the integration of data from various sources, and the development of an appropriate regulatory framework governing the use of AI technologies. The introduction of intelligent technologies into the management of the transport complex allows creating a safer, more efficient and user-friendly transport environment, which ultimately contributes to improving the quality of life in modern cities. Moscow's experience in applying AI technologies to manage the transport complex has confirmed their high efficiency, creating the basis for the dissemination of similar solutions in other regions of Russia.
MMGU Herald. 2025;(2 (68)):48-52
pages 48-52 views

Modern Approaches to Estimating the Regional Output Gap

Yanyshev D.A.

Abstract

The concept of potential output assists the Central Bank in managing aggregate demand through the regulation of the money supply. Potential output reflects the level of production consistent with a long-run sustainable equilibrium in the economy. This paper investigates the concept of potential output and the output gap, focusing on the Central Federal District of Russia. It considers an unobserved components model (UCM) built around the Cobb - Douglas production function. In our analysis, we incorporate Phillips curves for prices and wages, as well as Okun's Law, to improve the accuracy of cyclical variable estimations. We construct an unobserved components model to obtain estimates of potential output. The study includes a statistical assessment of the Central Federal District's potential output using the Hodrick - Prescott (HP) filter and an evaluation of the output gap and potential output of the Central Federal District using the unobserved components model. We find that regional output gap estimations can be performed using models that do not account for interregional interactions, while yielding results similar to more complex models. Unobserved components models and the Hodrick - Prescott filter are effective for analyzing potential output. However, potential output estimates, even in semi-structural models, are often revised, the inherent uncertainty in such calculations.
MMGU Herald. 2025;(2 (68)):53-58
pages 53-58 views

An Interregional Dynamic Stochastic General Equilibrium Model

Korshunov I.D.

Abstract

This paper develops a dynamic stochastic general equilibrium (DSGE) model for the Russian economy, disaggregated into two regions: the Central Federal District (CFD) and the rest of Russia. We motivate the study by highlighting its relevance and significance, and provide a review of existing literature in the field. The model incorporates key economic agents to ensure comprehensiveness and realism, including households (whose behavior is described using the Euler equation), firms producing goods via a Cobb-Douglas production function, investment producers, the government, and the Central Bank. The analysis focuses on the contributions of various factors to the dynamics of the output gap and inflation. Particular attention is paid to the specific characteristics of the CFD, allowing for a more accurate representation of regional disparities and their impact on aggregate economic dynamics. The paper details the model construction, presents the results of our analysis, and concludes with implications for economic policy and forecasting.
MMGU Herald. 2025;(2 (68)):59-64
pages 59-64 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».