Method for Determining an Aircraft Route to Avoid a Thunderstorm Using the Shortest Path on a Graph

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

The article presents the results of developing a method for determining the optimal route for bypassing an aircraft (AC) of a temporally constant (stationary) zone of thunderstorm activity and heavy rainfall. The method is based on finding the shortest path on a graph. It takes into account the geometries of hazardous meteorological phenomena and the minimum safe distances to them. The authors compare strategies based on the use of convex and concave hulls in the formation of thunderstorm bypass zones. The analysis reveals a statistically significant difference in the central tendencies of the corresponding route lengths. It demonstrates that routes using concave hulls are on average 2% shorter, with possible absolute differences in lengths of up to several hundred kilometers. The main practical result of the work is that the proposed method for determining the optimal route to avoid a thunderstorm can be used as a tool to increase the situational awareness of aircraft pilots and optimize crew operations when flying in adverse weather conditions. It allows automatic thunderstorm avoidance using an autopilot and contribute to improved economic efficiency of flights by reducing fuel consumption through the selection of the optimal bypass routes.

Авторлар туралы

G. Kovalenko

St. Petersburg State University of Civil Aviation named after Air Chief Marshal A.A. Novikov

Хат алмасуға жауапты Автор.
Email: kgvf@inbox.ru
ORCID iD: 0000-0002-4849-8878
Doctor of technical sciences, professor Saint-Petersburg, 196210, Russia

I. Yadrov

St. Petersburg State University of Civil Aviation named after Air Chief Marshal A.A. Novikov

Email: yadrov.ilya@gmail.com
ORCID iD: 0009-0007-3978-6345
graduate student Saint-Petersburg, 196210, Russia

Әдебиет тізімі

  1. Kovalenko G. V., Yadrov I. A., Kuts K. A. (2023). Intelligent Adaptive Flight Crew Decision Support System for Thunderstorm Avoidance. Russian Aeronautics. 66(3): 552-559.
  2. Lavezzi G., Guye K., Cichella V., Ciarcià M. (2023). Comparative analysis of nonlinear programming solvers: performance evaluation, Benchmarking, and Multi-UAV optimal path planning. Drones. 7(8): 487.
  3. Li B., Chen B. (2021). An adaptive rapidly-exploring random tree. IEEE/CAA Journal of Automatica Sinica. 9(2): 283-294.
  4. Madkour A., Aref W. G., Rehman F. U., Rahman M. A., Basalamah S. (2017). A survey of shortest-path algorithms. arXiv preprint arXiv:1705.02044. 26 p.
  5. Milani Z., Nichman L., Matida E., Fleury L., Wolde M., Bruning E., McFarquhar G. M., Kollias P. (2025). In-Flight Measurements of Lightning Locations Using an Aircraft-Mounted Lightning Mapper. Aerospace Science and Technology. 110038.
  6. Muravyev I. S. (2022). Experimental test of the method for evaluating the functioning of automated systems on latest-generation aircraft [Eksperimental'naya proverka metoda ocenki funkcionirovaniya avtomatizirovannyh sistem na vozdushnyh sudah poslednego pokoleniya]. Crede Experto: transport, society, education, language [Crede Experto: транспорт, общество, образование, язык]. 3: 20-33. (In Russian)
  7. Nita I. A., Radu C., Cheval S. (2024). Aviation accidents related to atmospheric instability in the United States (2000-2020). Theoretical and Applied Climatology. 155(6): 5483-5497.
  8. Park J. S., Oh S. J. (2012). A new concave hull algorithm and concaveness measure for n-dimensional datasets. Journal of Information Science and Engineering. 28(3): 587-600.
  9. Rachmawati D., Gustin L. (2020). Analysis of Dijkstra's algorithm and A* algorithm in shortest path problem. Journal of Physics: Conference Series, IOP Publishing. 1566(1): 7.
  10. Ravankar A. A., Ravankar A., Emaru T., Kobayashi Y. (2020). HPPRM: hybrid potential based probabilistic roadmap algorithm for improved dynamic path planning of mobile robots. IEEE Access. 8: 221743-221766.
  11. Saalfeld A. (1999). Topologically consistent line simplification with the Douglas-Peucker algorithm. Cartography and Geographic Information Science. 26(1): 7-18.
  12. Tan C. S., Mohd-Mokhtar R., Arshad M. R. (2021). A comprehensive review of coverage path planning in robotics using classical and heuristic algorithms. IEEE Access. 9: 119310-119342.
  13. Xu J., Zheng Z., Feng Y., Qing X. (2010). A concave hull algorithm for scattered data and its applications. 3rd International Congress on Image and Signal Processing, IEEE. 5: 2430-2433.
  14. Yilmaz N. K. (2008). Path planning of autonomous underwater vehicles for adaptive sampling using mixed integer linear programming. IEEE Journal of Oceanic Engineering. 33(4): 522-537.
  15. Zhao C., Zheng D., Zhang Y., Liu X., Zhang Y., Yao W., Zhang W. (2021). Turbulence characteristics of thunderstorms before the first flash in comparison to non-thunderstorms. Geophysical Research Letters. 48(18): 10.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).