Parameters of non-linear models of soil for analysis of stress-strain state of a rockfill dam
- Authors: Kotov F.V.1, Sainov M.P.2
-
Affiliations:
- Moscow State University of Civil Engineering (National ResearchUniversity) (MGSU)
- National Research University “Moscow Power Engineering Institute” (MPEI)
- Issue: Vol 14, No 3 (2024)
- Pages: 28-56
- Section: Building structures. Soils and foundations. Technology and organization of construction. Designing of buildings and constructions. Engineering survey and inspection of buildings
- URL: https://journals.rcsi.science/2305-5502/article/view/276574
- DOI: https://doi.org/10.22227/2305-5502.2024.3.28-56
- ID: 276574
Cite item
Full Text
Abstract
Introduction. Calculations of stress-strain state (SSS) of the first and second classes embankment dams are required to be carried out using non-linear models of soil. Such models include the Hardening Soil model (model HS) and Mohr – Coulomb model (model MC). It is important to determine the parameters of these models for coarse soils: crushed stone and gravel-pebble.Materials and methods. Parameters of the HS model for coarse soils were determined by processing of the results of triaxial tests, which are presented in foreign publications. Parameters of the MC model were determined from condition of the SSS approximate correspondence of a high dam (100 m high) obtained by using two models. Stress-strain state of the dam was determined by means of numerical modelling in the PLAXIS 2D software package.Results. HS model parameters are selected; which allow satisfactory description of soil behaviour at deviatoric loading; noticeable deviations are revealed only in values of volumetric deformations. Comparison showed that crushed stone whose test results are used for determination of models’ parameters, refers to properly compacted soil of modern rockfill dams. When selecting the parameters for the MC model, which are equivalent to the HS model, the results of rockfill dam numerical modelling were checked both in deformations and in stress-strain state. At the dam SSS formation there vividly revealed the effect of soil “hardening”: at the stage of perceiving hydrostatic pressure the soil deformation sharply decreases as compared to the stage of loads from the dead weight. Therefore, it is reasonable to select parameters of the MC model separately for two stages of the dam loading.Conclusions. The HS model in general makes it possible to reflect non-linear deformations of coarse soils, however, it does not take into account the curvilinear character of the limiting surface and cannot simultaneously reflect the phenomena of contraction and dilatancy. Use of the MC model does not permit adequate simulation of rockfill dam SSS; the selected parameters of the MC model may be used only for approximate calculations.
About the authors
F. V. Kotov
Moscow State University of Civil Engineering (National ResearchUniversity) (MGSU)
Email: KotovFV@mgsu.ru
M. P. Sainov
National Research University “Moscow Power Engineering Institute” (MPEI)
Email: SainovMP@mpei.ru
ORCID iD: 0000-0003-1139-3164
SPIN-code: 2369-9626
References
- Andjelkovic V., Pavlovic N., Lazarevic Z., Radovanovic S. Modelling of shear strength of rockfills used for the construction of rockfill dams // Soils and Foundations. 2018. Vol. 58. Issue 4. Pp. 881–893. doi: 10.1016/j.sandf.2018.04.002
- Marsal R.J. Large scale testing of rockfill materials // Journal of the Soil Mechanics and Foundations Division. 1967. Vol. 93. Issue 2. Рр. 27–43. doi: 10.1061/jsfeaq.0000958
- Araei A.A., Soroush A., Tabatabaei S.H., Ghalandarzadeh A. Consolidated undrained behavior of gravelly materials // Scientia Iranica. 2012. Vol. 19. Issue 6. Рр. 1391–1410. doi: 10.1016/j.scient.2012.09.011
- Ghanbari A., Hamidi A., Abdolahzadeh N. A study of the rockfill material behavior in large-scale tests // Civil Engineering Infrastructures Journal. 2013. Vol. 46. Issue 2. Рр. 125–143. doi: 10.7508/ceij.2013.02.002
- Honkanadavar N.P., Sharma K.G. Testing and modeling the behavior of riverbed and blasted quarried rockfill materials // International Journal of Geomechanics. 2014. Vol. 14. Issue 6. doi: 10.1061/(ASCE)GM.1943-5622.0000378
- Xiao Y., Liu H., Chen Y., Jiang J. Strength and deformation of rockfill material based on large-scale triaxial compression tests. I: Influences of density and pressure // Journal of Geotechnical and Geoenvironmental Engineering. 2014. Vol. 140. Issue 12. doi: 10.1061/(ASCE)GT.1943-5606.0001176
- Jia Y., Xu B., Chi S., Xiang B., Zhou Y. Research on the particle breakage of rockfill materials during triaxial tests // International Journal of Geomechanics. 2017. Vol. 17. Issue 10. doi: 10.1061/(ASCE)GM.1943-5622.0000977
- Pan J., Jiang J., Cheng Z., Xu H., Zuo Y. Large-scale true triaxial test on stress-strain and strength properties of rockfill // International Journal of Geomechanics. 2020. Vol. 20. Issue 1. doi: 10.1061/(ASCE)GM.1943-5622.0001527
- Саинов М.П. Деформируемость горной массы в теле каменно-набросных плотин // Строительство: наука и образование. 2019. Т. 9. № 3 (33). С. 5. doi: 10.22227/2305-5502.2019.3.5. EDN GBNXDO.
- Pramthawee P., Jongpradist P., Kongkitkul W. Evaluation of hardening soil model on numerical simulation of behaviors of high rockfill dams // Songklanakarin Journal of Science and Technology. 2011. Vol. 33. Issue 3. Рр. 325–334.
- Yao F.H., Guan S.H., Yang H., Chen Y., Qiu H.F., Ma G. et al. Long-term deformation analysis of Shuibuya concrete face rockfill dam based on response surface method and improved genetic algorithm // Water Science and Engineering. 2019. Vol. 12. Issue 3. Рр. 196–204. doi: 10.1016/j.wse.2019.09.004
- Qu P., Chai J., Xu Z. Three-dimensional static and dynamic analyses of an embedded concrete-face rockfill dam // Water. 2023. Vol. 15. Issue 23. P. 4189. doi: 10.3390/w15234189
- Gao J., Han X., Han W., Dang F., Ren J., Xue H. et al. Research on the slip deformation characteristics and improvement measures of concrete-faced rockfill dams on dam foundations with large dip angles // Scientific Reports. 2024. Vol. 14. Issue 1. doi: 10.1038/s41598-024-59222-0
- Özkuzukiran S., Özkan M.Y., Özyazicioglu W.M., Yildiz G.S. Settlement behaviour of a concrete faced rock-fill dam // Geotechnical & Geological Engineering. 2006. Vol. 24. Issue 6. Рр. 1665–1678. doi: 10.1007/s10706-005-5180-1
- Gao Y., Liu H., Won M.S. Behavior of rockfill dam under complex terrain condition // Arabian Journal of Geosciences. 2020. Vol. 13. Issue 19. doi: 10.1007/s12517-020-06040-z
- Sukkarak R., Likitlersuang S., Jongpradist P., Jamsawang P. Strength and stiffness parameters for hardening soil model of rockfill materials // Soils and Foundations. 2021. Vol. 61. Issue 6. Рр. 1597–1614. doi: 10.1016/j.sandf.2021.09.007
- Andrian F., Ulrich N., Monkachi M. Numerical analysis of the 210 m-High Nam Ngum 3 CFRD // Lecture Notes in Civil Engineering. 2020. Рр. 749–762. doi: 10.1007/978-3-030-51085-5_41
- Sukkarak R., Jongpradist P., Pramthawee P. A modified valley shape factor for the estimation of rockfill dam settlement // Computers and Geotechnics. 2019. Vol. 108. Рр. 244–256. doi: 10.1016/j.compgeo.2019.01.001
- Сорока В.Б., Саинов М.П., Королев Д.В. Каменно-набросные плотины с железобетонным экраном: опыт исследований напряженно-деформированного состояния // Вестник МГСУ. 2019. Т. 14. № 2. С. 207–224. doi: 10.22227/1997-0935.2019.2.207-224
- Wen L., Chai J., Xu Z., Qin Y., Li Y. A statistical review of the behaviour of concrete-face rockfill dams based on case histories // Géotechnique. 2018. Vol. 68. Issue 9. Рр. 749–771. doi: 10.1680/jgeot.17.p.095
- Саинов М.П., Котов Ф.В. Параметры модели упрочняющегося грунта для моделирования высоких грунтовых плотин // Вестник науки и образования Северо-Запада России. 2024. Т. 10. № 2. С. 56–67. EDN FJGMOI.
Supplementary files
