Macroeconomic models of forecasting development of economy of Far Eastern Federal District and its regions

Cover Page

Cite item

Full Text

Abstract

Construction of macromodels of Far Eastern Federal District and its three regions and forecasting development of their economies with using these macromodels are described in the article. Results of that forecasting for the period until 2033 year by two scenarios, worked out formerly for forecasting economic dynamics of Russia, are presented. Each of these scenarios is characterized by values of world prices of Urals oil and natural gas and reference price of gold for 2021-2033 years. For each region (including federal district) the preferable scenario for development of its economy is determined. For one of scenarios the region with most dynamically developing economy is determined. Forecasting economic dynamics of indicators by structure of volume of shipped production (works, services), which did not go into macromodels, is considered also.

About the authors

D. M. Galin

Federal Research Center «Computer Science and Control» of Russian Academy of Sciences

Email: zavelsky@isa.ru
Research assistant, Kandidat of economic sciences 44/2 Vavilova street, Moscow, 119333

I. V. Sumarokova

Federal Research Center «Computer Science and Control» of Russian Academy of Sciences

Email: zavelsky@isa.ru
Technician of the 1st category 44/2 Vavilova street, Moscow, 119333

References

  1. Suvorov A.V., Ivanov V.N., Budanova A.I. Sistema makroekonomicheskikh balansov dlya prognozirovaniya ekonomiki regionov Rossii [A system of macroeconomic balances for forecasting the economies of Russian regions]. // Problemy prognozirovaniya [Problems of forecasting], 2021, 2:6-18.
  2. Livchits V.N., Shatalova O.M., Kasatkina E.V. Mezhregionalnaya differentsiatsiya v RF: empiricheskiy analiz vliyaniya territorialnoy lokalizatsii otrasley na uroven ekonomjcheskoy aktivnosti regionov [Regional differences in the Russian Federation: an empirical analysis of the influence of territorial localization of industry sectors on the level of regional economic activity]. // Ekonomika i matematicheskie metody [Economics and mathematical methods], 2023, v.59(3):77-90.
  3. Danilova I.V., Antonyuk V.S., Bogdanova O.A. «Udaroprochnost» monoprofilnykh regionov v usloviyakh vneshnikh shokov: otsenka i upravlencheskie resheniya [Shock robustness of single-industry regions: assessment and governance]. // Upravlenets [The Manager], 2023, v.14(6):33-49.
  4. Doroshenko S.V., Vasileva R.I., Litvinets V.P. Gosudarstvennaya programma razvitiya Dalnego Vostoka i eyo effektivnost dlya regionov [The Far Eastern development program and effectiveness for regions: case-study assessment]. // Problemy prognozirovaniya [Problems of forecasting], 2024, 2:113-124.
  5. Galin D.M., Sumarokova I.V. Primenenie makroekonomicheskikh modeley Rossii i eyo regionov dlya prognozirovaniya ikh ekonomicheskoy dinamiki [Using macroeconomic models of Russia and its regions for forecasting their economic dynamics]. // Trudy ISA RAN [Proceedings of Institute for Systems Analysis], 2019, 69(1):37-49.
  6. Galin D.M., Sumarokova I.V. Prognozirovanie razvitiya ekonomiki rossiyskikh regionov s uchyotom novogo klassifikatora vidov ekonomicheskoy deyatelnosti [Forecasting development of economy of Russian regions with taking the new classification of kinds of economic activities into account]. // Trudy ISA RAN [Proceedings of Institute for Systems Analysis], 2023, 73(2):26-39.
  7. Galin D.M., Sumarokova I.V. Prognozirovanie ekonomicheskoy dinamiki Rossii s uchyotom vliyaniya koronavirusa na ekonomiku [Forecasting economic dynamics of Russia with taking influence of coronavirus on economy into account]. // Trudy ISA RAN [Proceedings of Institute for Systems Analysis], 2024, 74(1):60-73.
  8. Johnston J. Econometric methods. 2nd ed. Tokyo: McGraw-Hill, Kogakusha Ltd, 1972. 448 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).